
Safety Manual for MPC5748G
Devices Supported: MPC5748G

Document Number: MPC5748GSM
Rev. 3, 08/2017

Safety Manual for MPC5748G, Rev. 3, 08/2017

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Preface

1.1 Overview.. 11

1.2 Safety manual assumptions.. 11

1.3 Safety manual guidelines..12

1.4 Functional safety standards.. 12

1.5 Related documentation... 13

1.6 Other considerations...13

Chapter 2
MCU Safety Context

2.1 Target Applications.. 15

2.2 Safety integrity level...15

2.3 Safety function..15

2.3.1 MCU safety functions..15

2.3.2 Correct operation... 16

2.4 Safe states... 17

2.4.1 MCU Safe state..17

2.4.2 Transitions to Safe statesystem..18

2.4.3 Continuous reset transitions...19

2.5 Faults and failures...19

2.5.1 Failure types...19

2.5.2 Faults..19

2.5.3 Dependent failures... 21

2.6 Single-point fault tolerant time interval and process safety time... 23

2.6.1 MCU fault indication time ..24

2.7 Latent-fault tolerant time interval for latent faults... 25

2.7.1 MCU fault indication time...26

2.8 MCU failure indication...27

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 3

Section number Title Page

2.8.1 Failure handling... 27

2.8.2 Failure indication signaling... 27

Chapter 3
MCU Safety Concept

3.1 General concept.. 29

3.2 Use of cores for safety - self-test, reciprocal comparison, temporal redundancy.. 31

3.3 ECC.. 31

3.3.1 End-to-End protection on data path...31

3.3.2 ECC for storage... 33

3.3.3 All-X words and ECC..34

3.3.4 ECC failure handling... 34

3.4 Clock and power monitoring.. 35

3.4.1 Clock..35

3.4.2 Power... 35

3.5 I/O peripherals.. 36

3.6 Communication controllers.. 36

3.6.1 Disabling of communication controllers... 36

3.7 Built-In Self Tests (BIST).. 37

3.7.1 BIST during boot... 38

3.7.2 LBISTed modules..38

3.8 FCCU and failure monitoring...40

3.8.1 External error indication.. 40

3.8.2 Failure handling... 41

3.8.3 Fault inputs.. 41

3.9 Memory Error Management Unit (MEMU)...42

3.9.1 Interface to ECC units... 42

3.10 Operational interference protection..43

3.11 Common cause failure measures.. 44

Chapter 4

Safety Manual for MPC5748G, Rev. 3, 08/2017

4 NXP Semiconductors

Section number Title Page

Hardware Requirements

4.1 Hardware requirements on system level...45

4.1.1 Assumed functions by separate circuitry...46

4.1.1.1 High impedance outputs.. 46

4.1.1.2 External Watchdog (EXWD)...46

4.1.1.3 Power Supply Monitor (PSM)... 47

4.1.1.4 Error Out Monitor (ERRM)...48

4.1.2 Optional hardware measures on system level..51

4.1.2.1 External communication..51

4.1.2.2 PWM output monitor...51

Chapter 5
Software Requirements

5.1 Software requirements on system level..53

5.1.1 Disabled modes of operation... 53

5.1.1.1 Debug mode...53

5.1.1.2 Test mode...54

5.2 MPC5748G modules.. 54

5.2.1 Cores.. 55

5.2.1.1 Runtime checks..55

5.2.2 Fault Collection and Control Unit (FCCU)... 57

5.2.2.1 Initial checks and configurations... 58

5.2.2.2 Runtime checks..59

5.2.3 Reset Generation Module (MC_RGM)... 60

5.2.3.1 Initial checks and configurations... 60

5.2.4 Self Test Control Unit (STCU2)..61

5.2.4.1 Initial checks and configurations... 61

5.2.5 Software Watchdog Timer...62

5.2.5.1 Run-time checks.. 63

5.2.6 Cyclic Redundancy Checker Unit... 64

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 5

Section number Title Page

5.2.6.1 Runtime checks..64

5.2.7 Slow Internal RC Oscillator...67

5.2.8 Fast Internal RC Oscillator (FIRC)..67

5.2.8.1 Initial checks and configurations... 67

5.2.8.2 Runtime checks..68

5.2.9 Fast External Oscillator (FXOSC)...68

5.2.9.1 Initial checks and configurations... 68

5.2.9.2 Runtime checks..69

5.2.10 PLL Digital Interface (PLLDIG)... 69

5.2.10.1 Initial checks and configurations... 69

5.2.11 Clock Monitor Unit (CMU)...70

5.2.11.1 Initial checks and configurations... 71

5.2.12 Mode Entry (MC_ME).. 71

5.2.13 Power Management Controller (PMC)..72

5.2.13.1 1.25 V supply supervision... 73

5.2.13.2 3.3 V supply supervision... 73

5.2.13.3 5 V supply supervision.. 74

5.2.14 Memory Protection Units.. 74

5.2.14.1 System Memory Protection Unit (SMPU)...74

5.2.14.2 Initial checks and configurations... 75

5.2.15 Peripheral Bridge (PBRIDGE) protection... 76

5.2.15.1 Initial checks and configurations... 76

5.2.16 Built-in Hardware Self-Tests (BIST)...76

5.2.16.1 Memory Built-In Self-Test (MBIST).. 78

5.2.16.2 Logic Built-In Self-Test (LBIST)..78

5.2.16.3 Flash memory array integrity self check... 79

5.2.16.4 Flash memory ECC logic check.. 79

5.2.16.5 Flash memory ECC fault report check.. 79

5.2.17 End-to-end ECC (e2eECC)..79

Safety Manual for MPC5748G, Rev. 3, 08/2017

6 NXP Semiconductors

Section number Title Page

5.2.18 Interrupt Controller (INTC)...80

5.2.18.1 Periodic low latency IRQs... 81

5.2.18.2 Non-Periodic low latency IRQs...81

5.2.18.3 Runtime checks..81

5.2.19 Enhanced Direct Memory Access (eDMA)...81

5.2.19.1 Runtime checks..82

5.2.20 System timer module... 83

5.2.20.1 Runtime checks..83

5.2.21 Periodic interrupt timer..83

5.2.21.1 Runtime checks..83

5.2.22 System Status and Configuration Module... 84

5.2.22.1 Initial checks and configurations... 84

5.2.23 Memory Error Management Unit (MEMU).. 84

5.2.24 Flash memory.. 84

5.2.24.1 EEPROM... 85

5.2.24.2 Initial checks and configurations... 85

5.2.24.3 Runtime checks..85

5.2.25 Body Cross Triggering Unit (BCTU).. 86

5.2.25.1 Runtime checks..87

5.2.25.2 Synchronize sequentially read inputs.. 87

5.2.26 Error reporting path tests... 88

5.2.27 Glitch filter...89

5.2.28 Register Protection module (REG_PROT)..89

5.2.28.1 Runtime checks..90

5.2.29 Wake-Up Unit (WKPU) / External NMI...90

5.2.30 Crossbar Switch (AXBS)...91

5.2.30.1 Runtime checks..91

5.2.31 System Integration Unit Lite2 (SIUL2)...91

5.2.31.1 Digital inputs... 92

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 7

Section number Title Page

5.2.31.2 Hardware..92

5.2.32 Analog-to-Digital Converter (ADC)..92

5.2.32.1 Initial checks and configurations... 93

5.3 Communications...93

5.3.1 Redundant communication.. 93

5.3.2 Fault-tolerant communication protocol... 94

5.4 Additional configuration information...95

5.4.1 Stack.. 95

5.4.1.1 Initial checks and configurations... 95

5.4.2 MPC5748G configuration... 97

Chapter 6
Failure Rates and FMEDA

6.1 Failure rates.. 99

6.2 FMEDA.. 99

6.2.1 Module classification...100

Chapter 7
Dependent Failures

7.1 Provisions against dependent failures.. 101

7.1.1 Causes of dependent failures... 101

7.1.2 Measures against dependent failures... 102

7.1.2.1 Environmental conditions..102

7.1.2.2 Failures of common signals... 102

7.1.3 Dependent failure avoidance on system level... 103

7.1.3.1 I/O pin/ball configuration.. 103

7.1.3.2 Modules sharing PBRIDGE.. 104

7.1.3.3 External timeout function.. 104

7.1.4 βIC considerations...105

Chapter 8
Additional Information

8.1 Testing All-X in RAM..107

Safety Manual for MPC5748G, Rev. 3, 08/2017

8 NXP Semiconductors

Section number Title Page

8.1.1 Candidate address for testing All-X issue... 107

8.1.2 ECC checkbit/syndrome coding scheme... 112

Chapter 9
Acronyms and Abbreviations

9.1 Acronyms and abbreviations.. 117

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 9

Safety Manual for MPC5748G, Rev. 3, 08/2017

10 NXP Semiconductors

Chapter 1
Preface

1.1 Overview
This document discusses requirements for the integration and use of the MPC5748G
Microcontroller Unit (MCU) in safety-related systems. It is intended to support safety
system developers in building their safety-related systems using the safety mechanisms of
the MPC5748G, and describes the system level hardware or software safety measures
that should be implemented to achieve the desired system level functional safety integrity
level. The MPC5748G is developed according to ISO 26262 and has an integrated safety
concept.

1.2 Safety manual assumptions
During the development of the MPC5748G, assumptions were made on the system level
safety requirements with regards to the MCU. During the system level development, the
safety system developer is required to establish the validity of the MCU assumptions in
the context of the specific safety-related system. To enable this, all relevant MCU
assumptions are published in the Safety Manual and can be identified as follows:

• Assumption: An assumption that is relevant for functional safety in the specific
safety system. It is assumed that the safety system developer fulfills an assumption in
the design.

• Assumption under certain conditions: An assumption that is relevant under certain
conditions. If the associated condition is met, it is assumed that the safety system
developer fulfills the assumption in the design.

Example: Assumption: It is assumed that the system is designed to go into a safe state
(Safe statesystem) when the safe state of the MCU (Safe stateMCU) is entered.

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 11

Example: Assumption under certain conditions: If a high impedance state on an output
is not safe, pull-up or pull-down resistors shall be added to safety-critical outputs. The
need for this will be application dependent for the unpowered or reset condition (tristated
I/O) of the MPC5748G.

The safety system developer will need to use discretion in deciding whether these
assumptions are valid for their particular safety-related system. In the case where an
MCU assumption does not hold true, the safety system developer should initiate a change
management activity beginning with impact analysis. For example, if a specific
assumption is not fulfilled, an alternate implementation should be shown to be similarly
effective at meeting the functional safety requirement in question (for example, the same
level of diagnostic coverage is achieved, the likelihood of dependent failures are similarly
low, and so on). If the alternative implementation is shown to be not as effective, the
estimation of an increased failure rate and reduced metrics (SFF: Safe Failure Fraction,
SPFM: Single-Point Fault Metrics, LFM: Latent Fault Metric) due to the deviation must
be specified. The FMEDA can be used to help make this analysis.

1.3 Safety manual guidelines
This document also contains guidelines on how to configure and operate the MPC5748G
in safety-related systems. These guidelines are preceded by one of the following text
statements:

• Recommendation: A recommendation is either a proposal for the implementation of
an assumption, or a reasonable measure which is recommended to be applied, if there
is no assumption in place. The safety system developer has the choice whether or not
to adhere to the recommendation.

• Rationale: The motivation for a specific assumption and/or recommendation.
• Implementation hint: An implementation hint gives specific details on the

implementation of an assumption and/or recommendation on the MPC5748G. The
safety system developer has an option to follow the implementation hint.

The safety system developer will need to use discretion in deciding whether these
guidelines are appropriate for their particular safety-related system.

1.4 Functional safety standards
It is assumed that the user of this document is familiar with the functional safety
standards ISO 26262 Road vehicles - Functional safety and IEC 61508 Functional safety
of electrical/electronic/programmable electronic safety-related systems. The MPC5748G

Safety manual guidelines

Safety Manual for MPC5748G, Rev. 3, 08/2017

12 NXP Semiconductors

is a component as seen in the context of ISO 26262 and in this case its development is
completely decoupled from the development of an item or system. Therefore the
development of the MPC5748G is considered a Safety Element out of Context (SEooC)
development, as described in ISO 26262-10.9 Safety element out of context and more
specifically detailed in ISO 26262-10.9.2.3 Development of a hardware component as a
safety element out of context and ISO 26262-10:2011-2012 Annex A ISO 26262 and
microcontrollers.

1.5 Related documentation
The MPC5748G is developed according to ISO 26262 and has an integrated safety
concept targeting safety-related systems requiring high safety integrity levels. In order to
support the integration of the MPC5748G into safety-related systems, the following
documentation will be available:

• Reference Manual (MPC5748GRM) - Describes the MPC5748G functionality
• Data Sheet (MPC5748GDS) - Describes the MPC5748G operating conditions
• Safety Manual (MPC5748GSM) - Describes the MPC5748G safety concept and

possible safety mechanisms (integrated in MPC5748G, system level hardware or
system level software), as well as measures to reduce dependent failures

• FMEDA - Inductive analysis enabling customization of system level safety
mechanisms, including the resulting safety metrics for ISO 26262 (SPFM, LFM and
PMHF) and IEC 61508 (SFF and ß-factor ßIC)

• FMEDA Report - Describes the FMEDA methodology and safety mechanisms
supported in the FMEDA, including source of failure rates, failure modes and
assumptions made during the analysis.

The FMEDA and FMEDA report are available upon request. The MPC5748G is a
SafeAssure solution; for further information regarding functional safety at NXP, visit
www.nxp.com/safeassure.

1.6 Other considerations
When developing a safety-related system using the MPC5748G, the following
information should be considered:

• The MPC5748G is handled in accordance with JEDEC standards J-STD-020 and J-
STD-033.

• The operating conditions given in the MPC5748G Data Sheet.
• If applicable, any published MPC5748G errata.

Chapter 1 Preface

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 13

http://www.nxp.com/safeassure

• The recommended production conditions given in the MPC5748G quality agreement.
• The functional safety manager for the developed and deployed system is required to

report all field failures of the MPC5748G to NXP.

As with any technical documentation, it is the reader’s responsibility to ensure he or she
is using the most recent version of the documentation.

Other considerations

Safety Manual for MPC5748G, Rev. 3, 08/2017

14 NXP Semiconductors

Chapter 2
MCU Safety Context

2.1 Target Applications
The family of devices are designed to address a wide variety of automotive applications
including but not limited to the door modules, seat modules, central body, vehicle body
controllers, smart junction box, front module applications, high end gateway or combined
body controller and gateway applications.

2.2 Safety integrity level
The MPC5748G is designed to be used in automotive, or industrial, applications which
need to fulfill functional safety requirements as defined by functional safety integrity
levels (for example, ASIL B of ISO 26262 or SIL 2 of IEC 61508). The MPC5748G is a
component as seen in the context of ISO 26262 and in this case its development is
completely decoupled from the development of an item or system. Therefore the
development of the MPC5748G is considered a Safety Element out of Context (SEooC)
development.

The MPC5748G is seen as a Type B subsystem in the context of IEC 61508 (“complex,”
see IEC 61508-2, section 7.4.4.1.3) with a HFT = 0 (Hardware Fault Tolerance) and may
be used in any mode of operation (see IEC 61508-4, section 3.5.16).

2.3 Safety function

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 15

2.3.1 MCU safety functions

Given the application independent nature of the MPC5748G, no specific safety function
can be specified. Therefore, during the SEooC development of the MPC5748G, MCU
safety functions were assumed. During the development of the safety-related system, the
MCU safety functions are mapped to the specific system safety functions (application
dependent). The assumed MCU safety functions are:

• Software Execution Function (Application Independent): Read instructions out of
the MPC5748G flash memory, buffer these within instruction cache, execute
instructions, read data from the MPC5748G System SRAM or flash memory, buffer
these in data cache, process data and write result data into MPC5748G System
SRAM. Functional safety of the Software Execution Function is primarily
achieved by safety mechanisms integrated on the MPC5748G.

Moreover, the following approach is assumed for Input / Output related functions and
debug functions:

• Input / Output Functions (Application dependent): Input / Output functions of the
MPC5748G have a high application dependency. Functional safety will be
primarily achieved by system level safety measures.

• Not Safety Related Functions: It is assumed that some functions are Not Safety
Related (e.g. debug).

Please see the Module classification section for further details.

2.3.2 Correct operation

Correct operation of the MPC5748G is defined as:

• MCU Safety Function and Safety Mechanism modules are operating according to
specification.

• Peripheral modules are usable by qualifying data with system level safety measures
or by using modules redundantly. Qualification should have a low risk of dependent
failures. In general, Peripheral module safety measures are implemented in system
level software.

• Not Safety Related modules are not interfering with the operation of other modules.

Safety function

Safety Manual for MPC5748G, Rev. 3, 08/2017

16 NXP Semiconductors

2.4 Safe states
A safe state of the system is named Safe statesystem, whereas a safe state of the
MPC5748G is named Safe stateMCU. A Safe statesystem is an operating mode without an
unreasonable probability of occurrence of physical injury or damage to the health of any
persons. A Safe statesystem may be the intended operating mode or a mode where the
system has been disabled.

Assumption: [SM_200] It is assumed that the system is designed to go into a safe state
(Safe statesystem) when the safe state of the MCU (Safe stateMCU) is entered. [end]

2.4.1 MCU Safe state

The safe states (Safe stateMCU) of the MPC5748G are:

• Operating correctly (see Figure 2-1 and section Correct operation)
• Explicitly indicating an internal error (indication on FCCU_EOUTn, Figure 2-1)
• In reset (see Figure 2-1)
• Completely unpowered (see Figure 2-1)
• Safe mode (see Figure 2-1)

Chapter 2 MCU Safety Context

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 17

wrong
communication

input

element

correct output

correct
communication

input wrong output

element

MCU error out

a) Correct operation b) Explicitly indicating an internal error

d) Completely unpoweredc) Reset

e) Tristated outputs

wrong
communication

input

element

wrong output

RESET

input

element
wrong
output

wrong
communication

communication
no

element

input no output

Figure 2-1. Safe stateMCU of MPC5748G

2.4.2 Transitions to Safe statesystem

Assumption: [SM_015] The system transitions itself to a Safe statesystem when the MCU
explicitly indicates an internal error (as shown on FCCU_EOUT0 or FCCU_EOUT1).
[end]

Implementation hint: If the MPC5748G signals an internal failure via its error out
signals (FCCU_EOUTn), the surrounding subsystem shall no longer use the MPC5748G
outputs for safety functions since these signals can no longer be considered reliable. If an
error is indicated, the system shall be able to remain in a Safe statesystem without any
additional action by the MPC5748G. Depending on the configuration, the system may
disable, or reset, the MPC5748G as a reaction to the error signal.

Assumption: [SM_016] The system transitions itself to a Safe statesystem when the MCU
is in a reset state. [end]

Assumption: [SM_017] The system transitions itself to a Safe statesystem when the MCU
is unpowered. [end]

Safe states

Safety Manual for MPC5748G, Rev. 3, 08/2017

18 NXP Semiconductors

Assumption: [SM_018] The system transitions itself to a Safe statesystem when the MCU
has no active output (for example, tristate). [end]

2.4.3 Continuous reset transitions

If a system continuously switches between a standard operating state and the reset state,
without any device shutdown, it is not considered to be in a Safe state.

Assumption: [SM_019] It is assumed that the application identifies, and signals,
continuous switching between reset and standard operating mode as a failure
condition. [end]

2.5 Faults and failures

2.5.1 Failure types

Failures are the main detrimental impact to functional safety:

• A systematic failure is manifested in a deterministic way to a certain cause
(systematic fault), that can only be eliminated by a change of the design process,
manufacturing process, operational procedures, documentation, or other relevant
factors. Thus, measures against systematic faults can reduce systematic failures (for
example, implementing and following adequate processes).

• A random hardware failure can occur unpredictably during the lifetime of a hardware
element and follows a probability distribution. A reduction in the inherent failure rate
of the hardware will reduce the likelihood of random hardware faults to occur.
Detection and control will mitigate the effects of random hardware faults when they
do occur. A random hardware failure is caused by a permanent fault (for example,
physical damage), an intermittent fault, or a transient fault. Permanent faults are
unrecoverable. Intermittent faults are, for example, faults linked to specific
operational conditions, or noise. Transient faults are, for example, particles (alpha,
neutron) or EMI-radiation. An affected configuration register can be recovered by
setting the desired value or by power cycling. Due to a transient fault, an element
may be switched into a self destructive state (for example, single event latch up), and
therefore may cause permanent destruction.

Chapter 2 MCU Safety Context

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 19

2.5.2 Faults

The following random faults may generate failures, which may lead to the violation of a
functional safety goal. Citations are according to ISO 26262-1 . Random hardware faults
occur at a random time, which results from one or more of the possible degradation
mechanisms in the hardware.

• Single-Point Fault (SPF): A fault in an element that is not covered by a safety
mechanism, and results in a single-point failure. This leads directly to the violation of
a safety goal. 'a' in the Figure 2-2 shows a SPF inside an element, which generates a
wrong output. The equivalent in IEC 61508 to Single-Point Fault is a Random fault.
Whenever a SPF is mentioned in this document, it is to be read as a random fault for
IEC 61508 applications.

• Latent Fault (LF): A fault whose presence is not detected by a safety mechanism
nor perceived by the automobile driver. A LF is a fault that does not violate the
functional safety goal(s) itself, but leads to a dual-point or multiple-point failure
when combined with at least one additional independent fault, which then leads
directly to the violation of a functional safety goal. 'b' in the Figure 2-2 shows a LF
inside an element, which still generates a correct output. No equivalent in IEC 61508
to LF is named.

• Dual-Point Fault (DPF): An individual fault that, in combination with another
independent fault, leads to a dual-point failure. This leads directly to the violation of
a functional safety goal. 'd' in the Figure 2-2 shows two LFs inside an element, which
generate a wrong output.

• Multiple-Point Fault (MPF): An individual fault that, in combination with other
independent faults, leads to a multiple-point failure. This leads directly to the
violation of a functional safety goal. Unless otherwise stated, multiple-point faults
are considered safe faults and are not covered in the functional safety concept of
MPC5748G.

• Residual Fault (RF): A portion of a fault that independently leads to the violation of
a functional safety goal, where that portion of the fault is not covered by a functional
safety mechanism. 'c' in the Figure 2-2 shows a RF inside an element, which –
although a functional safety mechanism is set in place – generates a wrong output, as
this particular fault is not covered by the functional safety mechanism.

• Safe Fault (SF): A fault whose occurrence will not significantly increase the
probability of violation of a functional safety goal. Safe faults are not covered in this
document. SPFs, RFs or DPFs are not safe faults.

Faults and failures

Safety Manual for MPC5748G, Rev. 3, 08/2017

20 NXP Semiconductors

input

element

LF

a) Single-Point Fault (SPF)

c) Residual Fault (RF)

LF
LF

SPF wrong
output

item

input

element

correct
output

item

b) Latent Fault (LF)

input

element

RF
wrong
output

item

safety
measure

failure
undetected

d) Dual-Point Fault (DPF)

input

element

wrong
output

item

Figure 2-2. Faults

SPFs should be detected within the Fault Tolerant Time Interval (FTTI). LFs (DPFs)
should be detected within the Latent-Fault Tolerant Time Interval (L-FTTI). In
automotive applications, L-FTTI is generally accepted to occur once per typical
automotive Ttrip and potential faults are typically detected by safety mechanisms which
are executed during system testing at startup. Detecting DPFs once per Ttrip reduces the
accumulation time of latent faults in Tlife of the product, to a maximum time period of
Ttrip.

2.5.3 Dependent failures
• Common cause failure (CCF): Subset of dependent failures in which two or more

component fault states exist at the same time, or within a short time interval, as a
result of a shared cause (see Figure 2-3).

A CCF is the coincidence of random failure states of two or more elements on
separate channels of a redundancy element which lead to the failure of the defined
element to perform its intended safety function, resulting from a single event or root
cause (chance cause, non-assignable cause, noise, natural pattern, and so on). A CCF
causes the probability of multiple channels (N) to have a failure rate larger than
λsingle channel

N (λredundant element > λsingle channel
N).

Chapter 2 MCU Safety Context

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 21

input

input failure b

failure a

channel 1

fault1

element

element

fault2

channel 2

CCF

Figure 2-3. Common Cause Failures

• Common mode failure (CMF):A single root cause leads to similar coincidental
erroneous behavior (with respect to the safety function) of two or more (not
necessarily identical) elements in redundant channels, resulting in the inability to
detect the failures. Figure 2-4 shows three elements within two redundant channels.
One single root cause (CMFA or CMFB) leads to undetected failures in the primary
channel and in one of the elements of the redundant channel.

input

input
failure

failure

fault1

element

CMF A

fault2

element

fault2'

element

comparison

CMF B

fault1'
output

output

secondary
channel

primary
channel

Figure 2-4. Common Mode failures

• Cascading failure (CF): CFs occur when local faults of an element in a system
ripple through interconnected elements causing another element or elements of the
same system and within the same channel to fail. Cascading failures are dependent
failures that are not common cause failures. Figure 2-5 shows two elements within a
single channel, in which a single root cause leads to a fault (fault 1) in one element
resulting in a failure (failure a). This failure then cascades to the second element,
causing a second fault (fault 2) that leads to a failure (failure b).

Faults and failures

Safety Manual for MPC5748G, Rev. 3, 08/2017

22 NXP Semiconductors

input
failure a

channel 1

element

fault1
failure b

channel 1

element

fault2

Figure 2-5. Cascading failures

2.6 Single-point fault tolerant time interval and process
safety time

The single-point Fault Tolerant Time Interval (FTTI)/Process Safety Time (PST) is the
time span between a failure that has the potential to give rise to a hazardous event and the
time by which counteraction has to be completed to prevent the hazardous event from
occurring.

Figure 2-6 shows the FTTI for a system:
• Normal MCU operation (a).
• With an appropriate functional safety mechanism to manage the fault (b).
• Without any suitable functional safety mechanism, a hazard may appear after the

FTTI has elapsed (c).

The equivalent in IEC 61508 to FTTI is Process Safety Time (PST). Whenever single-
point fault tolerant time interval or FTTI is mentioned in this document, it shall be read as
PST for IEC 61508 applications.

Chapter 2 MCU Safety Context

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 23

MCU normal
operation MCU failure operation Safe stateMCU

Single point fault*

not all failure
measures are visible
on item level
(controlled faults)
e.g. ECC-correction
of single-bit

time

a)

*)

b)

c)

fault detection

(MCU)
fault detection time fault reaction time

(MCU)

(MCU)
fault indication time

(item)
fault reaction

time

item normal
operation

item failure operation
Emergency Operationitem

or Safe statesystem

item normal
operation

longest possible failure operation
possible
hazard

Fault Tolerant Time Interval (FTTI) of the safety
goal regarding single point faults

Figure 2-6. Fault tolerant time interval for single point faults

Fault indication time is the time from the occurrence of a fault to when the MPC5748G is
switched into a Safe stateMCU (for example, indication of that failure by driving the error
out pins, forcing outputs of the MPC5748G to a high impedance state, or by assertion of
reset).

2.6.1 MCU fault indication time

Fault indication time is the sum of Fault detection time and Fault reaction time.

• Fault detection time (Diagnostic test interval + Recognition time) is the maximum
time for detection of a fault and consists of:

• Diagnostic test interval is the interval between online tests (for example,
software based self-test) to detect faults in a functional safety-related system.
This time depends closely on the system implementation (for example,
software).

• Software cycle time of software based functional safety mechanisms. This
time depends closely on the software implementation.

• Recognition time is the maximum of the recognition time of all involved
functional safety mechanisms.

• Fault reaction time (Internal processing time + External processing time) is the
maximum of the reaction time of all involved functional safety mechanisms
consisting of internal processing time and external indication time:

Single-point fault tolerant time interval and process safety time

Safety Manual for MPC5748G, Rev. 3, 08/2017

24 NXP Semiconductors

• Internal processing time to communicate the fault to the Fault Collection and
Control Unit (FCCU), and can take up to a maximum of 10 FastInternal RC
Oscillator (FIRC) clock cycles (nominal frequency of 16 MHz).

• External indication time to notify an observer about a failure external to the
MPC5748G. This time depends on the indication protocol configured in the
Fault Collection and Control Unit (FCCU):

• Dual Rail protocol and time switching protocol:
• FCCU configured as "fast switching mode": indication delay is a

maximum of 64 μs. As soon as the FCCU receives a fault signal, it
reports the failure to the system.

• FCCU configured as "slow switching mode": an indication delay
could occur. The maximum delay is equal to the duration of the
semiperiod of the error out (FCCU_EOUTn) frequency. With an
IRCOSC frequency of 16 MHz, the error out frequency is 61Hz.
Therefore, the maximum indication delay is 128 μs.

• Bi-stable protocol: indication delay is a maximum of 64 μs. As soon as the
FCCU receives a fault signal, it reports the failure to the system.

If the configured reaction to a fault is an interrupt, an additional delay (interrupt latency)
may occur until the interrupt handler is able to start executing (for example, higher
priority IRQs, AXBS contention, register saving, and so on).

The sum of the MPC5748G fault indication time and system fault reaction time should be
less than the FTTI of the functional safety goal.

2.7 Latent-fault tolerant time interval for latent faults
The Latent-fault tolerant time interval (L-FTTI) is the time span between a latent fault,
that has the potential to coincide along with other latent faults and give rise to a
hazardous multiple-point event, and the time at which counteraction has to be completed
to prevent the hazardous event from occurring. L-FTTI defines the sum of the respective
worst case fault indication time and the time for execution of the corresponding
countermeasure. Figure 2-7 shows the L-FTTI for multiple-point faults in a system.

There is no equivalent to L-FTTI in IEC 61508.

Chapter 2 MCU Safety Context

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 25

MCU normal operation MCU failure
operation

Safe stateMCU

fault not infringing
the safety for itself,
only together with
an additional fault
(multiple fault)

time

a)

*)

b)

c)

fault detection

(MCU)
fault detection time fault reaction time

(MCU)

fault reaction
time

failure operation
Emergency Operationitem

or Safe statesystem

longest possible failure operation hazard

Fault Tolerant Time Interval (L-FTTI) of the
safety goal regarding Latent Faults

latent fault*

(MCU)
fault indication time

multiple point fault**

**)probability of multiple point fault
infringing safety function is significant
e.g. 1/1000 of the total failure rate

multiple-point fault
detection interval of

the safety goal

Fault Tolerant Time Interval (FTTI)
of the safety goal regarding

multiple point faults

normal operation

normal operation

Figure 2-7. Fault Tolerant Time Interval for latent faults

Latent fault indication time is the time it takes from the occurrence of a multiple-point
failure to when the indication of that failure is driven on FCCU_EOUTn, forcing the
outputs of the MPC5748G to a high impedance state (Safe Mode) or by assertion of reset.

2.7.1 MCU fault indication time

Fault indication time is the sum of Fault detection time and Fault reaction time. In
general, the Fault detection time and Fault reaction time are negligible for multiple-point
failures since the L-FTTI is significantly larger (hours, rather than seconds) than typical
safety mechanism detection and reaction times. Typically the safety mechanisms to detect
latent faults are executed during start-up, shut-down or periodically as required by the
diagnostic test interval of the safety system.

The sum of latent fault indication time and latent and multiple point fault reaction time
should be less than the L-FTTI of the functional safety goal.

Latent-fault tolerant time interval for latent faults

Safety Manual for MPC5748G, Rev. 3, 08/2017

26 NXP Semiconductors

Note

Detection and handling of a latent fault by a latent fault
detection mechanism must be completed within the Multi-Point
Fault (MPF) detection interval. Afterwards, it is assumed that
the fault caused a multi-point failure, and latent fault detection
is no longer guaranteed to work properly.

2.8 MCU failure indication

2.8.1 Failure handling

Failure handling can be split into two categories:

• Handling of failures before enabling the system level safety function (for example,
during/following the MPC5748G initialization). These failures are required to be
handled before the system enables the safety function, or in a time shorter than the
respective FTTI after enabling the safety function.

• Handling of failures during runtime with repetitive supervision while the safety
function is enabled. These errors are to be handled in a time shorter than the
respective FTTI.

Assumption:[SM_022] It is assumed that single-point and latent fault diagnostic
measures complete operations (including fault reaction time) in a time shorter than the
respective FTTI or L-FTTI when the safety function is enabled. [end]

Recommendation: It is recommended to identify startup failures before enabling system
level safety functions.

A typical failure reaction, with regards to power-up/start-up diagnostic measures, is to not
initialize and start the safety function, but instead provide failure indication to the user.

Software can read the failure source that caused a FCCU fault, and can do so either
before or after a functional reset. Software can also reset the failure, but the external
failure indication will stay in failure mode for a configurable amount of time. If
necessary, software can also reset the MPC5748G.

Chapter 2 MCU Safety Context

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 27

2.8.2 Failure indication signaling

The FCCU offers a hardware channel to collect errors and bring the device to a
Safe stateMCU when a failure is present in the MPC5748G. The FCCU provides two error
output signals (FCCU_EOUT0 and FCCU_EOUT1) used for external failure indication.

Different protocols for the error output pins are supported:

• Dual rail protocol

• Time switching protocol

• Bi-stable protocol

• Test mode

After power-on reset, the FCCU_EOUTn outputs are either high-impedance or they are
in a state that indicates an error. An error status flag can be read to indicate if the FCCU
is in an error state. The flag can be written by software to 1, to indicate a fault, or 0, to
indicate operational state. The FCCU_EOUTn outputs will transition to the operational
state only by software request.

At least one of the FCCU_EOUTn outputs will be high to indicate that the device is in
the operational state. If a two-pin bi-stable protocol with differential outputs is
implemented (for example, FCCU_EOUT0 = 0 and FCCU_EOUT1 = 1 and vice-versa),
the application software can configure that FCCU_EOUTn signal that will be high to
indicate the operational state (see Error Out Monitor (ERRM) for details on requirements
for connecting FCCU_EOUTn to external devices).

MCU failure indication

Safety Manual for MPC5748G, Rev. 3, 08/2017

28 NXP Semiconductors

Chapter 3
MCU Safety Concept

3.1 General concept
Figure 3-1 is a top-level diagram showing the functional organization of the MPC5748G.

4 KB d-cache8 KB i-cache

Nexus 3+SPFP-APU

64-bit AHBE2 E-ECC

160 MHz e200z4

Peripheral
bridge

E2 E-ECC

Flash

160 MHz e200z4

Low power
unit interface

E2 E-ECC64-bit data SMPU

64-bit AHB

E2 E-ECC

Nexus 3+

80 MHz e200z2

Flexray

MLB150

HSM

uSDHC

Ethernet(ENET)
Ethernet Switch

eDMA

HS_USBSPH

System bus masters

System

HS_USBOTG

128 KHz
SIRC

2 x MEMU

WKPU

BAF

FMPLL

RTC/API

4 x SWTs

16 x SEMA4

16 x PIT-RTI

32 KHz
SXOSC

8–40 MHz
FXOSC

Padkeeper
support

Register
protection

MC_CGM,
MC_PCU,
MC_ME,
MC_RGM

STCU
(MBIST/
LBIST)

SIUL

3 x STM

PMC

16 MHz FIRC

DEBUG/
JTAG

FCCU

PASS

SSCM

CMU

TDMPeripheral clusters

80 ch 10-bit ADC0
(mix int and ext)

64 ch 12-bit ADC1
(mix int and ext)

1 x FlexCAN(PN)
7 x FlexCAN

1x 18 LinFlex

4 x I2C 3 x analog
comparator (CMP)

4 x DSPI
6 x SPI

3 x SAI
3 x FCD

3 x eMIOS + BCTU 3-core INTC DMA and
2 x chmux

1 x CRC

3 x SA-PF buffers

6 MB array (inc EEE)

E2 E-ECC

Triple ported

64-bit wide RAM

256 KB array

3xRAM

E2 E-ECC

256 KB array

256 KB array

LPU_CTL

2 x DSMC3 x DSMC

*All FlexCANs optionally
 support CAN FD

Figure 3-1. MPC5748G block diagram

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 29

The MPC5748G has an integrated safety concept targeting safety-related systems
requiring high safety integrity levels. In general, safety integrity is achieved in the
following ways:

• The safety of storage and of the data path to storage and periphery is ensured by End-
to-End ECC (e2eECC) with address encoding and selected additional safety
measures for individual modules. For the periphery, end-to-end ECC protection ends
at the I/O bridges (see section ECC)

• Clock and power, generation and distribution, are supervised by dedicated monitors
(see section Clock and power monitoring)

• The safety of the periphery is ensured by application-level measures (such as
connecting one sensor to different I/O modules, sensor validation by sensor fusion,
and so on). Hardware supports this application-level redundancy by providing
redundant I/O modules connected to different peripheral bridges (PBRIDGEs) to
maximize the independence between the monitored and monitoring resources (see
sections I/O peripherals and Communication controllers)

• MBISTs and LBISTs are provided to avoid the accumulation of latent faults in the
functional logic as well as in the safety mechanisms (see section BIST during boot).
Dedicated mechanisms are provided to check the availability of safety mechanisms
and the functionality of each error reaction path (such as by fake fault injection)

• The Fault Collection and Control Unit is responsible for collecting and reacting to
failure notifications (see section FCCU and failure monitoring)

• For error events including ECC corrections and detections: The MEMU is
responsible for collecting and reporting to the FCCU error events in system
memories and flash memory as well as e2eECC errors caused by the AXBS, RAM
controller, or flash memory controller (see section Memory Error Management Unit
(MEMU))

• Common Cause Failures (CCFs) are dealt with by a set of measures for both control
and avoidance of CCFs spanning system-level approaches (such as temperature and
nonfunctional signal monitoring) and back-end techniques (such as isolated silicon
areas and routing constraints) (see section Common cause failure measures)

• Operational interference protection is ensured via a hierarchical memory protection
schema allowing concurrent execution of software with different (lower) ASIL (see
section Operational interference protection)

• The integrity of the safety function may be covered through reciprocal software
execution or temporal redundancy of software execution on the cores (see section
Use of cores for safety - self-test, reciprocal comparison, temporal redundancy)

General concept

Safety Manual for MPC5748G, Rev. 3, 08/2017

30 NXP Semiconductors

3.2 Use of cores for safety - self-test, reciprocal comparison,
temporal redundancy

In order to detect permanent faults in cores executing safety relevant code a software
based self-test can be executed. The self-test can be executed independently on each of
the main z4 cores. NXP has developed a Structural Core Self-Test Library for the
MPC5748G e200z420 core. The Library and associated documentation is available upon
request (see section Software based self-test).

To protect against permanent and transient faults, a reciprocal comparison can be
executed. The application software is executed by the two core subsystems (processing
units) and exchanges data (including results, intermediate results and test data)
reciprocally or controls independent system channels. A comparison of the data is carried
out using software in each unit and detected differences lead to a failure message (see
section Reciprocal comparison).

Another method of improving detection of transient faults is to use temporal (or time)
redundancy. This is when safety-critical tasks are computed multiple times using the
same or similar inputs on the same core, and the results compared within the FTTI (see
section Temporal redundancy).

3.3 ECC
Error correcting codes are used for end-to-end protection from bus masters to system
storage as well as for individual protection of peripheral RAMs and PBRIDGES a and b.

3.3.1 End-to-End protection on data path

Connections between AXBS masters and slaves (clients) are denoted as data paths. Data
corruption on all data paths between the core and any client is detected via two main
safety mechanisms: data from the cores is encoded using Error Correcting Code (ECC),
which is implemented with a Single-Error Correction, Double-Error Detection
(SECDED) code with a Hamming distance of 4 and includes coverage of addressing
information. Control signals and address decoding are monitored to verify the data
reaches all of the intended clients, from all possible connections to these clients and the
intended operation is performed on the target address. Figure 3-2 illustrates the overall
ECC schema.

Chapter 3 MCU Safety Concept

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 31

E2E ECC

DMA

E2E ECC

HSM

Z2 Core
E2E ECC

AXBS0 E2E ECC

MLB150

E2E ECC

FlexRay

E2E ECC

uSDHC

E2E ECC

Ethernet

E2E ECC

USBOTG

E2E ECC

USBSPH

 ECC

PBRIDGEa

I/O

 ECC

PBRIDGEb

I/O

 3 x RAM
Control E2E
ECC

 RAM array
storing ECC

 Flash Control

 Flash array
storing ECC

Z4 Core
E2E ECC

Z4 Core
E2E ECC

AXBS1

Figure 3-2. General view of e2eECC

NOTE

Specific implementations for the MPC5748G vary depending
on the special requirements of RAM and flash memory
concerning ECC handling, as well as for caches, local RAM,
tag memories of the cores and DMA RAM.

ECC bits are generated on writes by AXBS masters (including, but not limited to the
core) and checked on reads. The ECC correction bits are stored alongside the data in flash
memory and RAM so, in principle, no ECC logic is necessary at the memories
themselves. For this reason the ECC schema is referred to as End-to-End ECC (e2eECC)
in the following sections. For AXBS slaves, other than memories, new ECC logic is
added as these clients cannot store or produce the ECC correction bits. This resolves the
problem where ECC needs to be calculated in real time before entering or exiting the
ECC-protected data path. This is particularly true with peripherals connected to the I/O
bridges. This setup is considered sufficient to fulfill safety requirements because the data
path not protected by ECC, which is downstream from the I/O bridges, is replicated and
is used redundantly by the application (see section I/O peripherals).

The e2eECC schema provides high detection capabilities against failures affecting the
data content of the transaction. The inclusion of the target address in the computation of
the redundancy bits (8 ECC bits) does allow the partial detection of addressing faults as
well. To reach the desired integrity level, additional dedicated safety mechanisms are
implemented in the data path particularly to:

• Improve the detection capability over addressing failures (no/multiple/wrong address
selected), considering faults affecting address transmission (from master to client) as
well as the decoding of the address;

• Provide coverage for control failures affecting, for example, the type (read vs. write)
or size of a transaction.

ECC

Safety Manual for MPC5748G, Rev. 3, 08/2017

32 NXP Semiconductors

Though safety mechanisms protecting the AXBS, the RAM controller, or the flash
memory controller are different, they are all based on the feedback of address and control
information from the target to the source of the transaction, which is responsible for
checking for consistency with respect to the intended transaction. Depending on the
portion of the data path covered by the specific safety mechanism, the source can be an
AXBS master port rather than the AXBS interface of the RAM or Flash Memory
Controllers; the target is respectively an AXBS slave port, the RAM array, or the flash
memory module. See the separate MPC5748G Reference Manual chapters dedicated to
the Crossbar Switch (AXBS), Flash Memory Controller (PFLASH), and RAM Controller
(PRAMC) for further details.

NOTE
The address and control feedback mechanism also covers
caches, local RAM, tag memories of the cores and DMA RAM.

3.3.2 ECC for storage

All storage (System RAM, local memory, flash memory, peripheral RAM) used in
normal operation is protected by ECC with SECDED (Single Error Correct and Double
Error Detect). Exceptions to this are noted below:

• The caches in the Z4a and Z4b cores are protected by EDC (Error Detection Code),
which detects but does not correct errors.

• FlexRay's schedule information RAM is protected by EDC only.
• The HSM's AES program extension RAM are not protected by ECC.

A list showing the implementation of RAMs with ECC (including address protection) and
for the device is shown in the following table.

Table 3-1. ECC RAM Implementations

Location Memory Memory Classification Address in ECC

PRAM PRAM0 System RAM Y

PRAM1 System RAM Y

PRAM2 System RAM Y

Z4A z4a_icache System RAM Y

z4a_itag System RAM Y

z4a_dcache System RAM Y

z4a_dtag System RAM Y

Z4B z4b_icache System RAM Y

z4b_itag System RAM Y

z4b_dcache System RAM Y

Table continues on the next page...

Chapter 3 MCU Safety Concept

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 33

Table 3-1. ECC RAM Implementations (continued)

Location Memory Memory Classification Address in ECC

z4b_dtag System RAM Y

HSM hsm_PRAM Peripheral RAM Y

hsm ic_data Peripheral RAM Y

hsm ic_tag Peripheral RAM Y

FlexRay flxray_data Peripheral RAM Y

flxray_lut Peripheral RAM Y

DMA dma_ram Peripheral RAM Y

Some memories, particularly system storage, use an ECC computed over data and
address to detect data and addressing faults (no/wrong/multiple selection). In addition,
these same memories include dedicated measures against addressing and control faults
(such as address/control feedback). This is different for storage related to peripheral
modules. Peripheral modules in general use an ECC without address error protections and
also do not include additional measures to detect them.

3.3.3 All-X words and ECC

There is a special case for legal ECC values in the MPC5748G. Memory entries that are
all zeros (All-0) or all ones (All-1), including the ECC parity bits, are not legal for
memory that is checked by ECC. The flash memory allows All-1, corresponding to the
status of an erase block, as a valid codeword.

Memories that include addresses in the ECC calculation do not specifically protect
against All-0 or All-1. This means that for some addresses All-0 or All-1 may be legal.

All-0 and All-1 memory content is indicated in different ways. For memories that do not
include address into the ECC calculation, All-0 and All-1 will be uncorrectable errors.
For all memories that include address into the ECC code-bit calculation, since the ECC
checkbits depend on the address, it is not possible to generate an uncorrectable error
indication for all the possible addresses. Therefore, an All-x content may result in a
correctable error.

Notice that for flash memory, additional dedicated safety mechanisms exist to detect
failures that have the potential of leading to an All-1 word (see the "Flash Memory
Controller (PFLASH)" chapter in the MPC5748G Reference Manual for more details on
flash memory safety mechanisms).

ECC

Safety Manual for MPC5748G, Rev. 3, 08/2017

34 NXP Semiconductors

3.3.4 ECC failure handling

Single-bit and double-bit errors (correctable and uncorrectable errors) are signaled to the
FCCU unless filtered by the MEMU. The MEMU (see Memory Error Management Unit
(MEMU)) may filter ECC error notification for known ECC error addresses (known
permanent correctable errors). Actual implementation will signal errors, not to the FCCU,
but to the MEMU which filters, then forwards unfiltered notifications in an aggregated
manner to the FCCU.

3.4 Clock and power monitoring

3.4.1 Clock

Clocks in the MPC5748G are supervised by a Clock Monitor Unit (CMU). The CMU is
driven by the FIRC (16 MHz internal oscillator) for independent operation from the
monitored clocks. If a supervised clock exceeds or falls below its specified frequency
range on the chip, the supervising CMU flags an error that sends a signal to the FCCU.

Clocks supervised by CMU instance are as follows:
• CMU: FIRC, FMPLL, and FXOSC

NOTE
The CMU is not initialized after reset. Software must check to
be sure that the clock is locked at the PLLDIG module and that
the CMU is initialized before running any safety functions.

3.4.2 Power

There are two types of voltage supervisors on the MPC5748G: Low Voltage Detect
(LVD) and High Voltage Detect (HVD) monitors. Safety relevant voltages
(recommended operating voltages) are supervised for values that are out of these ranges.
Since any voltage running outside of the safety relevant range has the potential to disable
the failure indication mechanisms of the MCU (such as FCCU, pads, and so on), the
indication of these errors can be used to cause a direct transition of the MCU into the safe
state (reset assertion) (see the "Power Management Controller block (PMC)" and "Power
Control Unit (MC_PCU)" chapters in the MPC5748G Reference Manual for details).

Chapter 3 MCU Safety Concept

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 35

3.5 I/O peripherals
To allow a safety application to make redundant use of all I/O peripherals, they each have
at least two instances, and each instance is connected to a different PBRIDGE. This
means, for example, that if DSPI is provided by the MCU, two DSPI modules (DSPIn,
DSPIm) are included and connected externally through different pins. Internally, DSPIn
would then be connected to PBRIDGE0 and DSPIm to PBRIDGE1, and they would be
accessible via different addresses.

The arrangement of I/O peripherals onto two PBRIDGEs, as well as further CCF
prevention measures, allow redundant use of peripherals while limiting possible causes of
CCFs. Redundant usage includes usage of equivalent peripherals in a replicated way as
well as usage of functionally different peripherals in, for example, feedback measurement
loops. Comparison of redundant operation is the responsibility of the application
software, not the safety hardware mechanism.

3.6 Communication controllers
Communication controllers provide the ability to exchange information with external
components and therefore fall under the same safety reasoning as I/O peripherals. Yet we
assume that for high bandwidth communication controllers additional software measures
are employed that do not require redundant communication peripherals.

The following communication controllers do not contain special safety mechanisms
(above what is included in them by their protocol specifications) nor are they duplicated
or spread over the PBRIDGE:

• FlexRay
• FlexCAN
• Ethernet
• MediaLB
• uSDHC
• USBOTG

Typically, software measures for the communication controllers (also called fault-tolerant
communication layer) could contain e2e CRC data protection, sender identification,
sequence numbering, and an acknowledgement mechanism.

I/O peripherals

Safety Manual for MPC5748G, Rev. 3, 08/2017

36 NXP Semiconductors

3.6.1 Disabling of communication controllers

In the event of a dangerous failure, the MCU offers the capability of disabling
transmission of individual channels of communication controllers such as:

• CAN
• FlexRay

Such disabling prevents the transmission of erroneous messages while preserving the
capability of communicating over the diagnostic bus. Disabling outputs is controlled by
resetting SIUL2_MSCRn[SMC] for the pins that are associated with communication
controllers where this feature is needed (see the "Pin muxing" table and the SIUL2
Multiplexed Signal Configuration register description in the "System Integration Unit
Lite2 (SIUL2)" chapter for details, as shown in the MPC5748G Reference Manual).

The FCCU intends to drive FCCU_EOUT0 to a fault state whenever FCCU FSM is in
fault state or FCCU_CFG[FCCU_SET_CLEAR] is 01b. When the FCCU intends to
drive FCCU_EOUT0 to a fault condition, the SIUL2 disables the output buffer of such
pins for which SIUL2_MSCRn[SMC] is cleared and thus disables transmission of
erroneous messages until FCCU intends to drive FCCU_EOUT0 to a non-fault condition.
After a communication controller transmission port is disabled, it remains in the same
state as long as the FCCU drives FCCU_EOUT0 to a non-fault condition. During this
mode, the state of weak pull-up/pull-down remain unchanged.

The application should configure SIUL2_MSCRn[SMC] for pins that have active
mapping of communication module (for example, FlexCAN, FlexRay) functionality and
ensure those pins do not remain in an undriven state.

NOTE
The FCCU uses internal signals to disable the communication
controller transmission, so that transmission is disabled even
when the FCCU cannot drive the EOUT0 pin because the pin is
configured as GPIO. Also, if EIN is used as error input,
externally pulling it up will disable the communication
controller transmission only if this event drives FCCU to fault
state.

3.7 Built-In Self Tests (BIST)
The term BIST indicates the set of built-in hardware mechanisms that can be used
(typically at startup) to avoid the accumulation of latent faults. BIST is a mechanism that
permits a device to test itself. On the MPC5748G, BIST is the main means to meet the
requirement on latent faults as defined by the ISO 26262 standard. Different types of

Chapter 3 MCU Safety Concept

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 37

BIST are implemented in the MPC5748G: LBIST for digital logic, MBIST for memories,
and the MCU's built-in mechanisms for testing analog peripherals. LBIST and MBIST
execution is managed by the STCU2, while the testing of analog peripherals requires
software intervention to be triggered (see chapter "Self-Test Control Unit (STCU2)" in
the MPC5748G Reference Manual).

3.7.1 BIST during boot

It is possible to configure the device such that a device BIST is performed every time the
device boots. BIST is performed transparently for the application while the device is still
under reset. In case the BIST fails, it is possible to configure the device to remain in reset
(refer to the SUF_DIS bit in the UTEST Miscellaneous register). Application software
can start executing when the BIST finishes successfully without detecting a fault. The
boot time BIST comprises:

• Memory BIST for all RAMs and ROM
• Scan-based Logic BIST for digital logic, which is divided into multiple partitions

that can be configured to be tested in parallel or sequentially to find the best time
versus power consumption trade off

A destructive reset should be triggered at least once per L-FTTI (for example, once per
drive cycle) to ensure an offline LBIST is performed. In some applications, the
MPC5748G may not be reset within the L-FTTI but may instead enter Low Power mode
within the L-FTTI. In this case, a destructive reset can be triggered upon exit from Low
Power mode, triggering an offline LBIST.

3.7.2 LBISTed modules

NOTE
At the end of LBIST routine execution, the modules present
inside LBIST partitions will completely get reset (i.e the
behavior will be similar to a power on reset).

LBIST is implemented for safety-critical modules. There are three LBIST controllers in
the device for following partitions:

Table 3-2. LBISTed modules

Partition 2 - Z4 Partition 0 - LPU 1 - Non-core bus masters and
crossbar within platform

z4a core MEMU_1 MEMU_0

Table continues on the next page...

Built-In Self Tests (BIST)

Safety Manual for MPC5748G, Rev. 3, 08/2017

38 NXP Semiconductors

Table 3-2. LBISTed modules (continued)

Partition 2 - Z4 Partition 0 - LPU 1 - Non-core bus masters and
crossbar within platform

z4b core PCM HSM

z2 core MLB150

PBRIDGE_A uSDHC

- USB_0 and USB_1

STM_0 FlexRay

PRAM_0 SMPU_0

INTC SMPU_1

ADC_0 Z2 iAHB gasket

EMIOS_2 PBRIDGE_A iAHB gasket

DSPI_4 PBRIDGE_B

LINFlex_0 PBRIDGE_B iAHB gasket

FlexCAN_0 -

eDMA iAHB Gasket

ENET iAHB Gasket

ENET e2e ECC Gasket

Flash memory controller

FlexRay e2e ECC Gasket

FlexRay iAHB Gasket

HSM iAHB Gasket

HSM e2e ECC Gasket

MLB iAHB Gasket

MLB e2e ECC Gasket

PRAM_1

PRAM_2

uSDHC iAHB Gasket

uSDHC e2e ECC Gasket

Semaphores2

STM_1

STM_2

SWT_1

SWT_2

USB_0 iAHB Gasket

USB_0 e2e ECC Gasket

USB_1 iAHB Gasket

USB_1 e2e ECC Gasket

eDMA

AXBS_1

AXBS_0

AXBS_0 iAHB Gasket

Table continues on the next page...

Chapter 3 MCU Safety Concept

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 39

Table 3-2. LBISTed modules (continued)

Partition 2 - Z4 Partition 0 - LPU 1 - Non-core bus masters and
crossbar within platform

AXBS_1 iAHB Gasket

DMAMUX_0

DMAMUX_1

TRNG_0

TRNG_1

FCCU

3.8 FCCU and failure monitoring
The FCCU offers a hardware mechanism to aggregate error notifications and a
configurable means to bring the device to a safe state. No CPU intervention is required
for collection and control operation. Error indications are passed from the individual
hardware components to the FCCU where the appropriate action is decided (according to
the FCCU configuration).

3.8.1 External error indication

Failure of the MCU is signaled to one or two pins, FCCU_EOUT0 and FCCU_EOUT1.
FCCU_EOUT0 can also serve as an error input mechanism (see Fault Collection and
Control Unit (FCCU) and the FCCU configuration section in the MPC5748G Reference
Manual for details on the fault output signals).

The error indication on pins FCCU_EOUT0 and FCCU_EOUT1 is controlled by the
FCCU.

NOTE
FCCU EOUT0 and EOUT1 are muxed on the pad, and their
controls will be via SIUL. There will be no interaction with the
HSM for this control.

The error status flag (FCCU_STAT[ESTAT]) can be read to determine whether the
FCCU is in an error state. This flag can be written by software to either a 1 (fault) or 0
(operational) when the FCCU is in operational state. Another flag, FCCU_STAT, is
accessible through the register interface. It mirrors the physical state of the FCCU_F[n]
external pin's value, though this might differ from the logical state if a toggling protocol
is used.

FCCU and failure monitoring

Safety Manual for MPC5748G, Rev. 3, 08/2017

40 NXP Semiconductors

EOUT does not indicate a fault condition if the chip is in reset. When the chip is in reset
and the I/O is high-impedance, you must assure the system safe state; for example, using
pull-up/down resistors to pull EOUT to its fault indication level.

3.8.2 Failure handling

The FCCU is an autonomous module that is responsible for reacting to failure indicators.
A different reaction can be configured for each failure source. Overall failure reaction
time requires time for detecting, processing, and indicating the error. During this time,
the MPC5748G could provide incorrect results to the system.

Failure sources include:

• All failure indication signals from modules within the MCU
• Control logic and signals monitored by the FCCU itself.
• Software-initiated failure indications. For example, software signals the FCCU that it

has evidence of a failure. Keep in mind that software can also directly influence the
state of the FCCU_EOUTn pins.

• External failure input

Available failure reactions are:

• Assertion of an interrupt (maskable or non-maskable)
• Resetting the MCU
• Changing the state of the failure indication pins, FCCU_EOUTn
• Disabling the transmission capabilities of communication controllers (for example ,

FlexRay, FlexCAN, LINFlexD) (note: possible only in conjunction with changing
the state of the failure indication pins)

• No reaction

Software can read the failure source that caused a fault, and can do so either before, or
after, a functional reset (the condition indicators are not volatile). Software can also reset
the failure, but the external failure indication will stay in failure mode for a configurable
minimum time. If necessary, software can also reset the MCU.

3.8.3 Fault inputs

The table "FCCU Non-Critical Faults Mapping" in chapter "Fault Collection and Control
Unit (FCCU)" of the MPC5748G Reference Manual shows the source of the fault signals
and the type of fault input to which these signals are connected at the FCCU.

Chapter 3 MCU Safety Concept

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 41

3.9 Memory Error Management Unit (MEMU)
The MEMU is responsible for the collection and reporting of error events associated with
ECC logic used on SRAM (a system RAM in this context is any RAM that is CPU
accessible), peripheral RAM, and flash memory. When ECC error events occur, the
MEMU receives an error signal that causes an event to be recorded, and possibly sets
corresponding error flags that are reported to the FCCU.

The MEMU stores the addresses of ECC errors that have occurred in a table as follows:

• Uniqueness of the addresses in the table is ensured. For example, if an address is
already stored in the MEMU's table, correctable errors at that address will no longer
be reported to the FCCU.

• Software can read and modify the MEMU table and remove individual entries (by
marking them as invalid). For example, this allows software to invalidate a new entry
in the MEMU table and wait for a repeat occurrence of the ECC error indicating a
permanent error in memory.

• If the MEMU table overflows, an additional signal (instead of the ECC error signal)
is sent to the FCCU.

As the MEMU aggregates address information from several sources, it might not be able
to process all simultaneously arriving reports. This is called a simultaneous overflow and
is signaled to the FCCU as a buffer overflow (see the "Memory Error Management Unit
(MEMU)" chapter in the MPC5748G Reference Manual).

3.9.1 Interface to ECC units

The MEMU receives data according to the following interface per ECC unit connected:

• Whether the error is a Single-Bit-Error (SBE) or Uncorrectable Error (UCE) type
• Address of the memory where the error occurred
• A configuration specifying whether the ECC unit is attached to a safety-related

system RAM, to flash memory, or to a peripheral RAM

If an error is signaled, it is compared against all errors known for that storage:

NOTE
If a previously known error has been marked invalid by
software, no comparison against the address will occur.

Memory Error Management Unit (MEMU)

Safety Manual for MPC5748G, Rev. 3, 08/2017

42 NXP Semiconductors

• If no entry of that address is already in the buffer, it is to be added into the
appropriate table depending on the SBE versus UCE indicator

NOTE
For this comparison the bit position will not be taken into
account. This is in contrast to MBIST reporting.

• If there is no free entry left in that buffer, the overflow flag is set.

If a valid entry of that address is in the buffer, the following occurs:

• If the entry indicates an SBE in that address, and the error indicated is uncorrectable,
a new entry is added in the MEMU buffer.

• In all other cases, nothing is changed in the entry.

3.10 Operational interference protection
Being a multi-master system, MPC5748G provides safety mechanisms to prevent non-
safety masters from interfering with the operation of the core, as well as mechanisms to
handle the concurrent execution of software with different (lower) ASIL. Interference
freedom is guaranteed via a hierarchical memory protection schema including:

• SMPU
• PBRIDGEs
• Register protection.

Memory protection is provided by the System MPUs (SMPU) located in each AXBS.
They will prevent access of different bus masters to address ranges and will typically be
used by the safety application to prevent non-safety related modules access to the
application's safety-relevant resources.

Furthermore, the PBRIDGE can restrict read and write access to individual I/O modules
based on the origin of the access and its state (user mode/supervisor mode).

Finally, the register protection included allows individual registers to be "locked" against
any manipulation without unlocking.

These safety mechanisms are further described in the SMPU chapter of the MPC5748G
Reference Manual.

Chapter 3 MCU Safety Concept

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 43

3.11 Common cause failure measures
Various measures are included to prevent common cause failures (CCF) from
endangering the effectiveness of the core or of the peripherals. These measures include
supervision of clock frequency and voltage level signals. In general, these measures are
independent from the software.

Also, there are several functional configuration registers throughout the MCU such that,
if they erroneously change, they can affect the execution of the MCU's safety function
and, at the same time, disable the respective safety mechanism. These registers in
particular are protected against bit flips. These same registers are also protected against
accidental software writes by employing the register protection safety feature.

Common cause failure measures

Safety Manual for MPC5748G, Rev. 3, 08/2017

44 NXP Semiconductors

Chapter 4
Hardware Requirements

4.1 Hardware requirements on system level
This section describes the system level hardware safety measures needed to complement
the integrated safety mechanisms of the MPC5748G.

The MPC5748G integrated safety concept enables SPFs and latent failures to be detected
with high diagnostic coverage. However, not all CMFs may be detected. In order to
detect failures which may not be detected by the MPC5748G, it is assumed that there will
be some separate means to bring the system into Safe statesystem.

Figure 4-1 depicts a simplified application schematic for a functional safety-relevant
application in conjunction with an external IC (only functional safety related elements
shown). The supplies generated from the external IC should be protected against voltage
over the absolute maximum rating of the device (as documented in the MPC5748G Data
Sheet in section "Absolute maximum ratings").

The external circuit will also monitor the FCCU_EOUTn signals. Through a digital
interface (for example, SPI), the MPC5748G repetitively triggers the watchdog of the
external IC. If there is a recognized failure (for example, watchdog not being serviced,
assertion of FCCU_EOUTn), the reset output of the external IC will be asserted to reset
the MPC5748G. A fail-safe output is also available to control or deactivate any fail-safe
circuitry (for example, power switch).

There is no requirement that these external measures are provided in one IC or even in
the specific way as described (for example, the external watchdog functionality can be
provided by another component of the system that can recognize that the chip stopped
sending periodic packets on a communication network).

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 45

Fail safe output

overvoltage
supervision

error
monitor

watchdog

External IC

SPI (or alternative)

Supply

RESET

error out signal(s)

MCU

Figure 4-1. Functional safety related connection to external circuitry

4.1.1 Assumed functions by separate circuitry

This section describes external components used in a system in conjunction with the
MPC5748G for safety-related systems.

It should be noted that failure modes of external services are only partially considered in
the FMEDA of the MPC5748G (for example, clock(s), power supply), and must be fully
analyzed in the system FMEDA by the safety system developer.

4.1.1.1 High impedance outputs

If the MPC5748G is considered to be in a Safe stateMCU (for example, unpowered and
outputs tristated), the system containing the MPC5748G may not be compliant with the
Safe statesystem. A possible system level safety measure to achieve Safe statesystem may be
to place pull-up or pull-down resistors on I/O when the high-impedance state is not
considered safe.

Assumption: [SM_038] If a high-impedance state on an output pin is not safe, pull-up or
pull-down resistors shall be added to safety-related outputs. The need for this will be
application dependent for the unpowered or reset (tristated I/O) MPC5748G.[end]

Rationale: In order to bring the safety-related outputs to such a level, that a
Safe statesystem is achieved.

Hardware requirements on system level

Safety Manual for MPC5748G, Rev. 3, 08/2017

46 NXP Semiconductors

4.1.1.2 External Watchdog (EXWD)

An external device, acting as an independent timeout functionality (for example, External
Watchdog (EXWD)), should be used to cover Common Mode Failures (CMF) of the
MPC5748G for safety-related systems.

The trigger may be a discrete signal(s) or message object(s). If within a defined timeout
period the EXWD is not triggered, a failure will be considered to have occurred which
would then switch the system to a Safe statesystem within the FTTI (for example, the
EXWD disconnects the MPC5748G from the power supply, or communication messages
are invalidated by disabling the physical layer driver).

Assumption under certain conditions: [SM_041] Timeout functionality (for example,
EXWD) external to the MCU may improve Common Mode Failure (CMF) robustness. If
a failure is detected, the external timeout function must switch the system to a
Safe statesystem within the FTTI.[end]

The implementation of the communication between the MPC5748G and the EXWD can
be chosen by the user as warranted by the application. Examples of different mechanisms
that can be used to trigger the EXWD can include any of the following:

• Serial link (SPI)
• Toggling I/O (GPIO)
• Periodic message frames (CAN, FlexRay)

4.1.1.3 Power Supply Monitor (PSM)

Supply voltages outside of the specified operational ranges may cause permanent damage
to the MPC5748G, even if it is held in reset.

Assumption: [SM_042] It is assumed that safety measures on system level maintain the
Safe statesystem during and after any supply voltage above the specified operational range.
[end]

The MPC5748G Microcontroller Data Sheet provides specific operating voltage ranges
that must be maintained.

Assumption: [SM_087] It is assumed that the external power is supervised for high and
low deviations. [end]

Assumption: [SM_088] It is assumed that the MCU is kept in reset if the external
voltage is outside specification and is protected against voltage over the absolute
maximum rating of the device (as documented in the Data Sheet in section "Absolute
maximum ratings"). [end]

Chapter 4 Hardware Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 47

If the power supply is out of range, MPC5748G shall be kept in reset or unpowered, or
other measures must possibly be used to keep the system in a safe state. Overvoltage
outside the specified range of the technology may cause permanent damage to the
MPC5748G even if kept in reset.

Implementation hint: An external and independent device may provide an over voltage
monitor for the external MPC5748G supplies. If the supplied voltage supply is above the
recommended operating voltage range of the MPC5748G, the MPC5748G should be
maintained with no power. The external power supply monitor will switch the system to a
Safe statesystem within the FTTI, and maintain it in Safe statesystem (for example, over-
voltage protection with functional safety shut-off, or a switch-over to a second power
supply unit).

If the MPC5748G power supply can be designed to avoid any potential of over-voltage,
the external voltage monitoring can be excluded from the system design.

Over-voltage on some supplies will be detected by the MPC5748G itself, but system
level measures might be required to maintain the Safe statesystem in case an over-voltage
situation may cause damage to the MPC5748G.

4.1.1.4 Error Out Monitor (ERRM)

If the MPC5748G signals an internal failure on its error out signals (FCCU_EOUT0,
and/or FCCU_EOUT1), the system may no longer rely on the integrity of the other
MPC5748G outputs for safety functions. If an error is indicated, the system has to switch
to, and remain in, Safe statesystem without relying on the MPC5748G. Depending on its
functionality, the system might disable or reset the device as a reaction to the error
indication (see Assumptions in Safe states).

The safety system developer can choose between two different methods of interfacing to
the FCCU:

• Both FCCU signals connected to an external device

• Only a single FCCU signal connected to an external device

Assumption: [SM_043] The overall system needs to include measures to monitor
FCCU_EOUTn of the MCU and move the system to a Safe statesystem when an error is
indicated. [end]

Hardware requirements on system level

Safety Manual for MPC5748G, Rev. 3, 08/2017

48 NXP Semiconductors

4.1.1.4.1 Both FCCU signals connected to separate device

In this configuration the separate device continuously monitors the outputs of the FCCU.
Thus, it can determine if the FCCU is not working properly.

This configuration does not require any dedicated software support.

Assumption: [SM_201] If both error out signals are connected to an external device, the
external device shall check both signals, taking into account the behavior of the two pins.
[end]

NOTE
See “EOUT interface” section in the “Fault Collection and
Control Unit (FCCU)” chapter of the MPC5748G Reference
Manual for details.

Rationale: To check the integrity of the FCCU, and FCCU signal routing on the system
level

Implementation hint: Monitoring the error output signals with combinatorial logic (for
example, XOR gate) can generate glitches. Oversampling these signals reduces the
possibility that glitches will occur.

4.1.1.4.2 Single FCCU signal connected to separate device

A single signal, FCCU_EOUT0 (or FCCU_EOUT1), is connected to a separate device.

If a fault occurs, the FCCU communicates the fault to the separate device through the
FCCU_EOUT0 (or FCCU_EOUT1).

The functionality of FCCU_EOUT0 (or FCCU_EOUT1) can be checked in the following
manner:

• FCCU_EOUT0 (or FCCU_EOUT1) read back internally.

• FCCU_EOUT0 (or FCCU_EOUT1) connected externally to a GPIO.

• FCCU_EOUT0 (or FCCU_EOUT1) uses time domain coding (for example, is active
for a deterministic time interval).

• Test the ability of FCCU_EOUT0 (or FCCU_EOUT1) to disable system
functionality (for example, measure voltage available at a motor if FCCU_EOUT0
(or FCCU_EOUT1) is expected to disable its power supply).

The system integrator chooses which solution best fits the system level functional safety
requirements.

Chapter 4 Hardware Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 49

The advantage of a single FCCU_EOUTn signal being used instead of using both
FCCU_EOUTn signals as in the previous section, is the lack of need for the separate
device to compare the FCCU_EOUTn signals.

4.1.1.4.2.1 Single FCCU signal connected to separate device using voltage
domain coding

Recommendation: If FCCU_EOUT0, or FCCU_EOUT1, is connected to a device not
using time domain coding, verification is needed that the FCCU_EOUTn signal(s) are
operating correctly before execution of any safety function can start.

Rationale: To check the integrity of FCCU_EOUT0, or FCCU_EOUT1

To verify the functionality of a FCCU_EOUTn signal, a fault may be injected into one of
the FCCU_EOUTn signals. The behavior of the signal can then be verified by the other
FCCU_EOUTn signal, or GPIO. Additionally, the fault output mode can be configured to
one of the test modes to control one FCCU_EOUTn as an output while the other
FCCU_EOUTn pin is an input or output. For example, TEST0 mode configures
FCCU_EOUT0 as an input and FCCU_EOUT1 as an output. This test mode can be used
to check the state of the FCCU_EOUT0 input by reading FCCU_EINOUT[EIN0].
Likewise, the user can control the FCCU_EOUT1 output by modifying
FCCU_EINOUT[EOUT1].

Since the FCCU will be monitoring the system, it is sufficient to check FCCU_EOUT0
(or FCCU_EOUT1) within the L-FTTI (for example, at power-up) to help reduce the risk
of latent faults. It is recommended that FCCU_EOUTn be checked once before the
system begins performing any safety-relevant function.

Assumption: [SM_170a] If the system is using the MCU in a single error output
configuration, the application software will need to configure the signals, and pads,
adjacent to FCCU_EOUT0 (or FCCU_EOUT1) to have a lower drive strength, and the
error output signal is configured with highest drive strength. [end]

Using a lower drive strength on the GPIO near FCCU_EOUT0 (or FCCU_EOUT1) will
result in the higher drive strength of FCCU_EOUTn to effect the logic level of the
neighboring GPIO in the event of a short circuit. Software may configure the slew rate
for the relevant GPIO in the Multiplexed Signal Configuration Register (SIUL2_MSCRn)
and Input Multiplexed Signal Configuration Register (SIUL2_IMCRn).

4.1.1.4.2.2 Single FCCU signal connected to separate device using time domain
coding

Rationale: Decode the time domain coding

Hardware requirements on system level

Safety Manual for MPC5748G, Rev. 3, 08/2017

50 NXP Semiconductors

Implementation hint: If a single FCCU signal (FCCU_EOUT0, or FCCU_EOUT1), is
connected to a separate device applying time domain coding (for example, a decoder), a
window timeout or windowed watchdog function, is good practice.

Since the FCCU is a safety mechanism, it is sufficient to implement a time domain
interval in the range of the L-FTTI.

4.1.2 Optional hardware measures on system level

As input/output operations are highly application dependant, functional safety of input/
output modules and peripherals should be assessed on a system level. The following
sections provide examples of possible functional safety mechanisms regarding input/
output operations.

4.1.2.1 External communication

Assumption under certain conditions: [SM_044] When data communication is used in
the implementation of a safety function, then system level functional safety mechanisms
are required to achieve the necessary functional safety integrity of communication
processes. [end]

Recommendation: System level measures to detect or avoid transmission errors,
transmission repetitions, message deletion, message insertion, message resequencing,
message corruption, communication delay and message masquerade improves the
robustness of communication channels.

4.1.2.2 PWM output monitor

The MPC5748G timer modules may require system-level safety measures in order to
achieve high functional safety integrity levels.

Assumption under certain conditions: [SM_045] When PWM outputs are used in the
implementation of a safety function, suitable system level functional safety integrity
measures are assumed to monitor these signals. [end]

Rationale: System level measures to detect or avoid erroneous PWM output signals
improves the safety integrity of PWM channels.

Chapter 4 Hardware Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 51

Monitoring can be implemented explicitly by monitoring the PWM signal directly with
an external device. The PWM signal may be monitored implicitly, by implementing an
indirect PWM feedback loop (for example, measuring average current flow of a full
bridge driver). This approach may use diverse implementations of input modules (for
example, the analog to digital converter).

The specific PWM features that are to be managed by system level safety measures are:

• Dead-time may need to always be positive, and greater than the maximum value of
TON or TOFF of the inverter switches.

• Open GPIO, and shorts to supply or ground, may need to be detected. This can be
accomplished, for example, by an external feedback mechanism to a timer module of
the MPC5748G capable of performing input capture functionality.

The system must be switched to Safe statesystem if the MPC5748G detects an error.

To reduce the likelihood of erroneous control (for example, a motor control application
with dead-time requirements to reduce the likelihood of short circuits destroying the
motor) in functional safety applications using I/O to control an actuator with a short
FTTI, functional safety requires system level supervision if the maximum fault indication
time and fault reaction time of MPC5748G exceeds the FTTI of the actuators.

If the PWM signals drive switches of a power stage (for example, bridge driver), the
timer may not be fast enough to detect a dead-time fault because its fault indication time
is often greater than the time required to avoid destruction of the power stage.

Hardware requirements on system level

Safety Manual for MPC5748G, Rev. 3, 08/2017

52 NXP Semiconductors

Chapter 5
Software Requirements

5.1 Software requirements on system level
This section lists required, or recommended, measures when using the individual
components of MPC5748G.

Given the application independent nature of the MPC5748G, no general safety function
can be specified. To define a specific safety function the MPC5748G would have to be
integrated into a complete (application dependent) system. Nevertheless, it is possible to
define abstract safety function elements and safety integrity functions:

• A safety function element is used to implement (or control) functional safety with
available hardware.

• A safety integrity function (often called diagnostic measures) is to improve the
probability of successful execution of functional safety.

Modules not explicitly covered by this document do not require safety-specific software
measures. It is also possible to ignore the required measures for explicitly mentioned
modules if equivalent measures to manage the same failures are alternatively included.

5.1.1 Disabled modes of operation

The system level and application software must ensure that the functions described in this
section are not activated while running functional safety-relevant operations.

5.1.1.1 Debug mode

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 53

The debugging facilities of the MPC5748G pose a possible source of failures if they are
activated during the operation of functional safety-relevant applications. They can halt
the cores, cause breakpoints to hit, write to core registers and the address space, activate
boundary scan, and so on. To reduce the likelihood of interference with the normal
operation of the application software, the MPC5748G may not enter debug mode.

Assumption:[SM_047] Debugging will be disabled in the field while the device is being
used for safety-relevant functions. [end]

Assumption under certain conditions:[SM_048] If modules like the Software
Watchdog Timer (SWT), System Timer Module (STM), Deserial Serial Peripheral
Interface (DSPI), Periodic Interrupt Timer (PIT), Fault Collection Control Unit (FCCU),
FlexRay, FlexCAN, or in general any modules which can be frozen in debug mode, are
functional safety-relevant, it is required that application software configure these modules
to continue execution during debug mode, and not freeze the module operation if debug
mode is entered. [end]

Rationale: To improve resilience against erroneous activation of debug mode

5.1.1.2 Test mode

Several mechanisms of the MPC5748G can be circumvented during test mode which
endangers the functional safety integrity.

Assumption: [SM_149] Test mode is used for comprehensive factory testing and is not
valid for normal operation. Test mode may not be used during normal operating mode
without an explicit agreement from NXP Semiconductors. [end]

Implementation hint: The VSS_HV_VPP pin is for test purposes only, and must be tied
to GND during normal operating mode. From a system level point of view, measures
must ensure that the VSS_HV_VPP pin is not connected to VDD during boot to avoid
entering test mode. The activation of test mode is supervised by the FCCU and will signal
a fault condition when test mode is entered. FIRC clock-related test mode activation is
intended to be covered by the frequency meter function of CMU_0, as described in the
FIRC Runtime checks section.

5.2 MPC5748G modules
An appropriate safety software protocol should be utilized (for example, Fault-Tolerant
Communication Layer, FTCOM) for any communication peripheral employed to meet
ASIL B application requirements.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

54 NXP Semiconductors

Assumption:[SM_151] It is assumed that communication over FlexRay and FlexCAN
interfaces be protected by a fault-tolerant communication protocol.[end]

The high-bandwidth communication controllers will not contain special safety
mechanisms (above what is included into them by their protocol specifications) nor are
they required to be duplicated or spread over the PBRIDGEs’ (in contrast to other I/O,
see Redundant communication).

The high-bandwidth communication controllers effected by the above requirement shall
be listed to the customer.

FlexRay and FlexCAN do not have safety mechanisms other than what is included in
their protocol specifications. The application software, or operating system, needs to
provide the safety measures for these modules to meet safety requirements.

Recommendation: Some redundant software checks (for example, a timer reset) after
periodic messages are received ensures communications remain active for critical
channels. This may be acknowledged by a core other than the main core. This helps to
avoid delays in the main core.

5.2.1 Cores

The cores Main Core 0 and Main Core 1 (each an e200z420) may be used to process non-
safety critical tasks as well as safety-critical tasks. When executing safety critical tasks, it
may be required to add software-based safety measures in order to achieve the desired
level of safety integrity. For each z4 core, faults in the ALU data path, registers (e.g.
general purpose registers), the address calculation (e.g. in the load/store unit or memory
and bus interfaces), the bus interface or the control logic (e.g. the sequencer, coding and
execution logic) could potentially affect correct execution of code, so software safety
measures should be put in place to detect these faults.

5.2.1.1 Runtime checks

5.2.1.1.1 Reciprocal comparison

To protect against permanent and transient faults, a reciprocal comparison should be
executed. The application software is executed by the two core subsystems (processing
units) and exchanges data (including results, intermediate results and test data)
reciprocally or controls independent system channels. A comparison of the data is carried
out using software in each unit and detected differences lead to a failure message.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 55

Assumption:[SM_305] It is assumed that application software reciprocal comparison
shall be used to check the safety integrity of the cores executing safety-critical tasks.
[end]

5.2.1.1.2 Software based self-test

A second safety measure to detect permanent faults is to execute a software based self-
test. The self-test can be executed independently on each of the z4 cores. Within the
FTTI, the processing unit shall periodically run code that tests the functionality of the
processing unit (structural test). The result of this software based self-test is calculated
offline during development and compared with the real-time value.

Assumption:[SM_316] It is assumed that a software based self-test shall be executed
within the FTTI on each core executing safety critical tasks independently. [end]

Preferably, the processing unit should not be the only method used to compare these two
values (self-test). Additionally, independent hardware should check that the result is
correct.

Implementation hint: Independent hardware could be:
• Signature watchdog: The software watchdog is triggered by writing a data pattern to

a specific address. The software based self-test result could be converted (by adding
an offset) to equal the software watchdog data pattern. The watchdog is used to
check the correctness of the self-test execution result.

• Address Decoder: The software based self-test result could be converted (by adding
an offset) to generate a safety relevant address. The erroneous self-test result could
be converted into an unpopulated address space, thus triggering an illegal address
trap. Alternatively, a time domain life signal could be generated using an address
based on the result of the self-test. When the address is incorrect, the life signal is not
generated correctly in the time domain (a trigger is missing) and this indicates to the
system to switch into a Safe statesystem.

• Message Objects: The result of the software based self-test may be communicated in
message objects (for example of a multiplexed communication network like
FlexCAN or Ethernet) to validate a message. The communication could be
performed explicitly by adding it to the payload or implicitly by including the result
in, for example, a payload CRC (for example a safety communication protocol).

Implementation hint: NXP has developed a Structural Core Self-Test Library for the
MPC5748G e200z420 core. The Library and associated documentation is available upon
request.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

56 NXP Semiconductors

5.2.1.1.3 Temporal redundancy

One method of improving detection of transient faults is to use temporal (or time)
redundancy. This is when the safety function is computed multiple times using the same
or similar inputs on the same core, and the redundant results compared within the Fault
Tolerant Time Interval. Any mismatch or result comparison out of an acceptable range of
the execution results is flagged as an error condition. This method has very low coverage
of permanent faults, or transient faults that have a duration longer than the FTTI.
However, it has good coverage of single point faults. In order to eliminate the common
cause failure of executing corrupted code in cache, it is necessary to flush the caches
between executions.

It is the responsibility of application software to perform a comparison of the same
software running repeatedly on the same core, and flag an error when necessary.

5.2.2 Fault Collection and Control Unit (FCCU)

The FCCU uses a hardware fail safe interface which collects faults and brings the device
to a Safe stateMCU, and indicates the internal failure of the MCU to the system, when a
failure is recognized.

All faults detected by hardware measures are reported to the FCCU. The FCCU monitors
critical control signals and collects all errors. Depending on the type of fault, the FCCU
places the device into an appropriately configured Safe stateMCU. To achieve this,
application software only has to configure the FCCU appropriately. No CPU intervention
is required for collection and control operation, unless the FCCU is specifically
configured to cause software intervention (by triggering IRQs or NMIs).

The FCCU offers a systematic approach to fault collection and control. It is possible to
configure the reaction for each fault source separately. The distinctive features of the
FCCU are:

• Collection of error information from modules whose behavior is essential to the
functional safety goal

• Configurable and graded fault control:
• Internal reactions

• No reset reaction
• IRQ
• Functional Reset

• External reaction (external failure reporting using FCCU_EOUTn)

The table “FCCU non-critical fault mapping” in the MPC5748G Reference Manual
shows the sources for critical faults to be signaled to the FCCU and the type of issued
reset.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 57

The failure of the MCU shall be signaled using two pins. These pins can be muxed with
other signals.

The FCCU has two multiplexed external signals, FCCU_EOUT0 and FCCU_EOUT1,
through which critical failures are reported. When the device is in reset or unpowered,
these outputs are tristated. The FCCU will provide notification via multiplexed pins an
error condition. This is to notify external support circuitry that an error occurred and
respective tasks can be taken.

The failure indication pin(s) shall be push-pull pins.

If the MCU is used in a single error out pin mode, the FCCU_EOUT0 pin will be used.

The pads of the error out pins shall have the highest drive strength available on the MCU
(other pins are also allowed to have this drive strength).

The pads adjacent to the FCCU_EOUT0 pad, as well as the pad of the pins adjacent to
the FCCU_EOUT0 pin, (in case that differs from the pad arrangement) shall be able to be
configured for a lower drive strength than the highest possible.

No VDD pin/pad shall neighbour the FCCU_EOUT0 pin/pad.

FCCU_EOUTn are intended to be connected to an independent device which
continuously monitors the signal(s). If a failure is detected, the separate device switches
to and maintains the system to a Safe statesystem condition within the FTTI (for example,
the separate device disconnects the MPC5748G device or an actuator from the power
supply).

5.2.2.1 Initial checks and configurations

Besides the possible initial configuration, no intervention from the MPC5748G is
necessary for fault collection and reaction.

Assumption: [SM_153] Before starting safety-relevant operations, software must ensure
that the fault reaction to each safety-relevant fault is configured. [end]

Rationale: Maintain the device in the Safe statesystem in case of failure

Implementation hint: The FCCU fault path is enabled by configuring FCCU registers
(for example, FCCU_NCF_CFG0, FCCU_NCFS_CFG0, FCCU_NCF_TOE0, and so
on). These registers are writable only if the FCCU is in the CONFIG state.

If a CMU monitors a FMPLL generated clock, and that clock is not used or is not used
for functional safety critical modules, error masking and limited internal reaction of the
module using that clock is acceptable.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

58 NXP Semiconductors

External reaction of the FCCU is always enabled and can not be disabled.

Assumption under certain conditions:[SM_154] If the outputs of the system I/O need
to be forced to a high impedance state upon entering safe mode,
MC_ME_SAFE_MC[PDO] = 1 needs to be written. [end]

Assumption:[SM_272] If the MPC5748G signals an internal failure via its error out
signals (FCCU_EOUTn), the system can no longer safely use the MPC5748G safety
function outputs. If an error is indicated, the system has to be able to remain in
Safe statesystem without any additional action from the MPC5748G. Depending on its
functionality, the system might disable or reset the MPC5748G as a reaction to the
indicated error. [end]

5.2.2.2 Runtime checks

Assumption under certain conditions:[SM_155] If the MPC5748G is continuously
switching between a standard operating state and reset, or fault state, without a device
shutdown, system level measures must be implemented to ensure that the system meets
the Safe statesystem criteria. [end]

Implementation hint: Software may be implemented to reduce the likelihood of cycling
between a functional and fault states. For example, in the case of periodic non-critical
faults, the software could clean the respective status and periodically move the device
from a fault state to normal state. This procedure may help avoid the possible looping
between functional and fault states.

To prevent permanent cycling between a functional state and a fault state, software will
need to keep track of cleaned faults, stop cleaning the faults and stay in a Safe stateMCU.
An exception to this would be if there was an unacceptably high occurence of necessary
fault cleaning. The limit for the number and frequency of cleaned faults is application
dependent. This may only be relevant if continuous switching between a normal
operating state and a reset state (as the failure reaction) is not a Safe statesystem.

The application software should store previous FCCU error indications. If several
consecutive resets are caused by the same FCCU error, the application software should
signal a failure.

Assumption:[SM_248] Before resetting the reset counters, the application software shall
ensure that it can detect longer reset cycles caused by faults in normal operation. [end]

NOTE
Longer reset cycles means length of time since the previous
reset.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 59

Implementation hint: Before the safety application clears the reset counters it reads and
saves the FCCU error status indication (if any faults were found) and compares the status
with the previous saved versions. If several consecutive resets are caused by the same
FCCU fault, or if too many resets due to faults are observed, software can take action,
such as causing a destructive reset.

5.2.3 Reset Generation Module (MC_RGM)

5.2.3.1 Initial checks and configurations

Implementation hint: It is good practice to configure a second failure notification
channel to communicate redundant critical application faults.

Implementation hint: To enable critical events to trigger a reset sequence,
MC_RGM_FERD = 0 should be written. If particular events are excluded,
MC_RGM_FEAR shall be configured to generate an alternate request in these cases.

To trigger a reset of the device by software, the MC_ME_MCTL[TARGET_MODE]
shall be used. Writing MC_ME_MCTL[TARGET_MODE] = 0000b causes a functional
reset where writing MC_ME_MCTL[TARGET_MODE] = 1111b causes destructive
reset (see section "Reset Generation Module (MC_RGM)" of the MPC5748G Reference
Manual for details).

5.2.3.1.1 Consecutive resets

Permanent cycling through otherwise safe states or permanent cycling between a safe
state and an unsafe state is considered a violation of the safety goal. Specifically, this
scenario relates to a continuous Reset – Start, Operation – Reset or Reset – Self-test –
 Reset sequence. Allowing such cycles would be problematic as it would allow an
unlimited number of attempts.

To detect a loop of resets, the MPC5748G supports functional reset escalation which can
be used to generate a destructive reset if the number of functional resets reaches the
programmed value. Once the functional reset escalation is enabled, the Reset Generation
Module (MC_RGM) increments a counter for each functional reset that occurs between
writes to the MC_RGM_FRET register. When the number of functional resets reaches
the programmed value in the MC_RGM_FRET, the MC_RGM initiates a destructive
reset. The counter can be cleared by software, destructive reset or power-on reset.

Assumption: [SM_279] Safety software shall reset the destructive reset counter
everytime after a reset, and is certain the MCU is working correctly. [end]

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

60 NXP Semiconductors

Assumption: [SM_159] The application software should reset the functional reset
counter every time it has finished checking its environment during startup. [end]

Assumption: [SM_160] Software must ensure that the counter threshold in the
MC_RGM_FRET and MC_RGM_DRET registers is a non-zero value. The default
setting of both MC_RGM_FRET and MC_RGM_DRET is 0xFh. [end]

5.2.4 Self Test Control Unit (STCU2)

The STCU2 executes built-in self-test (LBIST, MBIST) and gives reaction to detected
faults by signaling faults to either the MC_RGM or to the FCCU (see "Self-Test Control
Unit (STCU2)" in the MPC5748G Reference Manual for details).

5.2.4.1 Initial checks and configurations

The STCU2 does not require any configuration performed by application software.

Assumption under certain conditions:[SM_162] When built in self test (for example,
LBIST, MBIST) circuits of the MPC5748G are used as functional safety integrity
measure (for example, to detect random faults, latent fault detection, and single-point
fault detection) in a functional safety system, functional safety integrity measures on
system level shall be implemented ensuring STCU2 integrity during/after STCU2
initialization but before executing a safety function. [end]

Rationale: The STCU2's correct behavior shall be verified by checking the expected
results by software.

Implementation hint: System (application) level software shall carry out checking of
STCU2 for ensuring STCU2 integrity (see section "Integrity software operations" in
"Self-Test Control Unit (STCU2)" chapter in the MPC5748G Reference Manual).

Implementation hint: The integrity software shall confirm that all MBISTs and LBISTs
finished successfully with no additional errors flagged.

This software confirmation prevents a fault within the STCU2 itself from incorrectly
indicating that the built in self-test passed.

This is an additional functional safety layer since the STCU2 propagates the LBIST/
MBIST and internal faults to the MC_RGM or the FCCU. So, reading STCU2_LBS,
STCU2_LBE, STCU2_MBSL, STCU2_MBSH, STCU2_MBEL, STCU2_MBEH and
STCU2_ERR registers helps increasing the STCU2 self-test coverage.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 61

Implementation hint: The STCU shall be configured (in UTEST flash memory) to
execute the LBIST and MBIST before activating the application safety function (see
section "STCU2 Configuration Register (STCU2_CFG)" in the "Self-Test Control Unit
(STCU)" chapter of the MPC5748G Reference Manual).

For power-on-reset, LVD selftest software has to be able to handle resets caused by the
power-on-reset selftest.

If one of the selftest fails, either hardware (preferred) or software shall prevent normal
operation to start. Failure in this context means:

• Any error in the LBIST.
• MBIST reports any multi-bit error or more than X single-bit errors.
• Any error in any other selftest module (in case they exist) including the selftest

controller itself.

If the MEMU is used to count MBIST error reports, X shall be a number smaller than the
size of the MEMU instance used to count MBIST error reports.

5.2.5 Software Watchdog Timer

The objective of the Software Watchdog Timer (SWT) is to detect a defective program
sequence when individual elements of a program are processed in the wrong sequence, or
in an excessively long or short period of time. Once the SWT is enabled, it requires
periodic and timely execution of the watchdog servicing procedure. The service
procedure must be performed within the configured time window, before the service
timeout expires. When a timeout occurs, a trigger to the FCCU can be generated
immediately, or the SWT can first generate an interrupt and load the down-counter with
the timeout period. If the service sequence is not written before the second consecutive
timeout, the SWT drives its FCCU channel to trigger a fault (see FCCU mapping of
faults).

Assumption:[SM_067] Before the safety function is executed, the SWT must be enabled
and configuration registers hard-locked against modification.[end]

Assumption:[SM_302] The SWT time window settings must be set to a value less than
the FTTI/PST. Detection latency shall be smaller than the FTTI/PST.[end]

Assumption:[SM_203] Before the safety function is executed, software must verify that
the SWT is enabled by reading the SWT control register (SWT_CR).[end]

Implementation hint: To enable the SWT and to hard-lock the configuration register,
the SWT control register flags SWT_CR[WEN] and SWT_CR[HLK] need to be asserted.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

62 NXP Semiconductors

Note

The timeout register (SWT_TO) must contain a 32-bit value
that represents a timeout less than the FTTI/PST.

In general, it is expected that the SWT helps to detect lost or significantly slow clocks.
Thus, the SWT needs to be used to also detect hardware faults, not only to detect
software faults. Using the SWT to detect clock issues is a secondary measure since there
are primary means for checking clock integrity (for example, the CMU).

The MPC5748G provides the hardware support (SWT) to implement both control flow
and temporal monitoring methods. If Windowed mode and Keyed Service mode (two
pseudorandom key values used to service the watchdog) are enabled, it is possible to
reach a highly effective temporal flow monitoring.

The assumptions of the STM module of crosscheck with the PIT and the SWT must be
followed.

Assumption: [SM_169] It is the responsibility of the application software to insert
control flow checkpoints with the required granularity as required by the application.
[end]

A valid service procedure re-loads the down counter with the time-out period.

Two service procedures are available:

• A fixed service sequence represented by a write of two fixed values (A602h, B480h)
to the SWT service register. Writing the service sequence reloads the internal down
counter with the timeout period.

• The next procedure is based on a pseudo-random key computed by the SWT every
time it is serviced and is written by software on the successive write to the service
register. The watchdog can be refreshed only if the key calculated in hardware by the
watchdog is equal to the key provided by software which may calculate the key in
one or more procedure/tasks (so called signature watchdog). The 16-bit key is
computed as SK(n + 1) = (17 × SKn + 3)mod216 .

• Fixed address execution – Watchdog is serviced by executing code at the address
loaded into the designated IAC register, which cannot be updated while the watchdog
is enabled.

• Incremental address execution – Watchdog is serviced by executing code at the
address loaded into the designated IAC register, which can be updated.

The SWT down counter is always driven by the SIRC clock.

5.2.5.1 Run-time checks

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 63

Implementation hint: Control flow monitoring can be implemented using the SWT.
However, other control flow monitoring approaches that do not use the SWT may also be
used. When using the SWT, the SWT shall be enabled and its configuration registers
shall be hard-locked to prohibit modification by application software.

5.2.6 Cyclic Redundancy Checker Unit

The Cyclic Redundancy Checker Unit (CRC) offloads the CPU in computing a CRC
checksum. The CRC has the capability to process two interleaved CRC calculations. The
CRC module may be used to detect erroneous corruption of data during transmission or
storage. The CRC takes as its input a data stream of any length and calculates a 32-bit
output value (signature).

The contents of the configuration registers of the functional safety related modules shall
be checked within the FTTI. The CRC unit should be used to detect accidental alteration
of data in configuration registers by calculating its CRC signature and comparing it
against a previously calculated CRC.

5.2.6.1 Runtime checks

Portions of the MPC5748G configuration registers do not provide the functional safety
integrity IEC 61508 series and ISO 26262 requires for high functional safety integrity
targets on their own. This relates to systematic faults (for example, application software
incorrectly overwriting registers), as well as random hardware faults (bit flipping in
registers).

Assumption: [SM_170b] The CRC calculation shall be executed at least once per FTTI
to verify the content of the safety-relevant configuration registers. [end]

Implementation hint: The CRC of the configuration registers of the modules involved
with the safety function should be calculated offline. Online CRC calculation (for
example, if some registers are dynamically modified) is possible if an independent source
for the expected register content is available.

At run time, the value calculated by the CRC module needs to be identical to the offline
value. To avoid overloading the core, the eDMA module can be used to support the data
transfer from the registers under check to the CRC module.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

64 NXP Semiconductors

Note

For some configuration registers (specifically clock and MCU
mode configurations) CRCing is insufficient since the registers
are unavailable until an event is triggered. In those instances,
additional measures to check correct initial configuration are
necessary (for example, clocks checked by the CMU).

Implementation hint: The CRC module offloads the CPU in computing a CRC
checksum. The CRC has the capability to process two different CRC calculations at the
same time. To verify the content of the MPC5748G configuration registers of the
modules involved with the safety function, the CRC module may be used to calculate a
signature of the content of the registers and compare this signature with a value
calculated during development.

Alternatively, the CPU could be used instead of the CRC module to check that the value
of the configuration registers has not been modified. However, using the CRC module is
more effective.

Implementation hint: The CRC module could be used to detect data corruption during
transmission or storage. The CRC takes as its input a data stream of any length and
calculates a 32-bit signature value.

Implementation hint: The expected CRC of the configuration registers of the modules
involved with the safety function should be calculated offline. When the safety function
is active (application run time), the same CRC value shall be calculated by the CRC
module within the FTTI. To unload the CPU, the eDMA module can be used to support
the data transfer from the registers being checked by the CRC module. The result of the
runtime computation is then compared to the predetermined value.

The application shall include detection, or protection measures, against possible faults of
the CRC module only if the CRC module is used as safety integrity measure or within the
safety function.

Implementation hint: An alternative approach would be to use the eDMA to reinitialize
the content of the configuration registers of the modules involved with the safety function
within the respective FTTI when the safety function is active (application runtime). This
approach may require additional measures to detect permanent failures (not fixed by
reinitialization). It also needs measures against transfer errors and ignores the fact that
some configuration registers cannot be changed except by a mode change.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 65

5.2.6.1.1 Implementation details

The eDMA and CRC modules should be used to implement these safety integrity
measures to unload the CPU.

Note

Caution: The signature of the configuration registers is
computed in a correct way only if these registers do not contain
any volatile status bit.

5.2.6.1.1.1 <module>_SWTEST_REGCRC

The following examples of safety integrity functions for register configuration checks are
used in this document:

• EMIOS0_SWTEST_REGCRC

The eMIOS0 configuration registers are read and a CRC checksum is computed. The
checksum is compared with the expected value.

• EMIOS1_SWTEST_REGCRC

The eMIOS1 configuration registers are read and a CRC checksum is computed. The
checksum is compared with the expected value.

• EMIOS2_SWTEST_REGCRC

The eMIOS2 configuration registers are read and a CRC checksum is computed. The
checksum is compared with the expected value.

• SIUL_SWTEST_REGCRC

The configuration registers of the SIUL2 are read and a CRC checksum is computed.
The checksum is compared with the expected value.

• ADC0_SWTEST_REGCRC

The ADC0 configuration registers are read and a CRC checksum is computed. The
checksum is compared to the expected value.

• ADC1_SWTEST_REGCRC

The ADC1 configuration registers are read and a CRC checksum is computed. The
checksum is compared to the expected value.

• The BCTU configuration registers are read and a CRC checksum is computed. The
checksum is compared to the expected value.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

66 NXP Semiconductors

5.2.7 Slow Internal RC Oscillator

The Slow Internal RC Oscillator (SIRC) has a nominal frequency of 128 kHz, but the
frequency accuracy over the entire voltage and temperature ranges must be considered
(see the MPC5748G Data Sheet for temperature and voltage variation details).

Functional safety-related modules that use the SIRC clock are:
• SWTn

In the rare case of an SIRC clock failure, these modules will stop functioning.

5.2.8 Fast Internal RC Oscillator (FIRC)

The Fast Internal RC Oscillator (FIRC) has a nominal frequency of 16 MHz, but the
frequency accuracy over the full voltage and temperature ranges must be taken into
account (see the MPC5748G Data Sheet for temperature and voltage variation details).

Functional safety-related modules that use the FIRC clock are:
• FCCU
• CMU

In the rare case of an FIRC failure, these modules will stop functioning.

As stated in PLL Digital Interface (PLLDIG), the FIRC should not be used as the input of
the PLL for the system clock of the MPC5748G.

5.2.8.1 Initial checks and configurations

The frequency meter of CMU shall be used to check the availability and frequency of the
FIRC. This feature allows measurement of the FIRC frequency using the XOSC as the
reference (IRC_SW_CHECK).

Assumption: [SM_173] The FIRC frequency is measured and compared to the expected
frequency of 16 MHz. This test is performed after power-on, but before executing any
safety function. Software writes CMU_CSR[SFM] = 1 to start the frequency
measurement, and the status of the measurement is checked by reading this same field.
When as CMU_CSR[SFM] = 0 the frequency measurement has completed (see
"Frequency meter" section in the "Clock Monitor Unit (CMU)" chapter of the
MPC5748G Reference Manual for details.). [end]

Rationale: To check the integrity of the FIRC

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 67

Note

If the FIRC is not operating due to a fault, the measurement of
the FIRC frequency will never complete and the
CMU_CSR[SFM] flag will remain set. The application may
need to manage detecting this condition. For example,
implementing a software watchdog which monitors the
CMU_CSR[SFM] flag status.

5.2.8.2 Runtime checks

The frequency meter of CMU shall be used to verify the availability and frequency of the
FIRC. This feature allows measurement of the FIRC frequency using the FXOSC as the
clock source.

Assumption: [SM_074] To detect failure of the FIRC, the application software shall
utilize the CMU's frequency meter to read the FIRC frequency and compare it against the
expected value of 16 MHz1.[end]

If the measured FIRC frequency does not match the expected value, there exists the
possibility of a complete failure of all safety measures. Software should then bring the
system to a Safe statesystem without relying on the modules driven by the FIRC (for
example, FCCU, CMU).

Recommendation: To increase the fault detection, this functional safety integrity
measure should be executed once per FTTI.

5.2.9 Fast External Oscillator (FXOSC)

FlexRay and FlexCAN, both of which feature modes to be clocked directly by the XOSC,
should not make use of these modes in normal operation unless effects of clock glitches
are sufficiently detected by the applied FT-COM layer.

5.2.9.1 Initial checks and configurations

1. Nominal frequency of the FIRC is 16 MHz, but the post trim accuracy over voltage and temperature must be taken into
account (see the MPC5748G Data Sheet).

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

68 NXP Semiconductors

Assumption:[SM_175] FlexRay and FlexCAN, both of which feature modes to be
clocked directly by the FXOSC, should not make use of these modes in normal operation
unless effects of clock glitches are sufficiently detected by the applied FT-COM layer.
[end]

5.2.9.2 Runtime checks

Assumption: [SM_176] Software shall check that the system clock is available, and
sourced by the FXOSC, before running any safety relevant function or enabling the
FCCU into the operational state.[end]

5.2.10 PLL Digital Interface (PLLDIG)

The MPC5748G uses a FMPLL (frequency modulated clock) used to generate high speed
clocks. The FMPLL provides a loss of lock error indication that is routed to the FCCU
(see the ‘FCCU error inputs’ table for particular fault channel). If there is no PLL lock,
the system clock can be driven by the FIRC. Glitches which may appear on the crystal
clock are filtered by the FMPLL (low-pass filter).

Implementation hint: PLLDIG_PLLSR[LOLF] indicates that a loss of lock event
occurred. The PLLDIG_PLLCR[LOLIE] can be set to enable an interrupt request upon
loss of lock.

5.2.10.1 Initial checks and configurations

After system reset, the external crystal oscillator is powered down and the PLL is
deactivated. Software shall enable the oscillator. The MPC5748G uses after system reset
the Fast Internal RC Oscillator (FIRC) as clock source (see the "Oscillators" chapter in
the MPC5748G Reference Manual and Fast Internal RC Oscillator (FIRC) for details on
FIRC configuration).

Assumption: [SM_178] Before executing any safety function, a high quality clock (low
noise, low likelihood for glitches) based on an external clock source shall be configured
as the system clock of the MPC5748G. [end]

Rationale: Since the FIRC is used by the CMU as reference to monitor the output of the
PLL, it cannot be used as input of the PLL.

Implementation hint: The PLL can be configured to use the Fast External Oscillator
(FXOSC) or the Fast Internal RC Oscillator (FIRC) as clock reference. In general
MC_CGM_AC5_SC[SELCTL] shall be set to 1 to select the FXOSC (reset value is 0).

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 69

Assumption under certain conditions:[SM_179] When clock glitches endanger the
system level functional safety integrity measure, respective functional safety-relevant
modules shall use the PLL as clock source. The PLL serves as a filter to reduce the
likelihood of clock glitches due to external disturbances. Alternatively, a high quality
external clock having low noise and low likelihood of clock glitches shall be used. [end]

Rationale: To reduce the impact of glitches stemming from the external crystal and its
hardware connection to the MPC5748G.

Implementation hint: This requirement is fulfilled by appropriately programming the
Clock Generation Module (MC_CGM) and Mode Entry Module (MC_ME).

During/after initialization but before executing any safety function, application software
has to check that the MPC5748G uses the PLL clock as "system clock".

Implementation hint: Application software can check the current system clock by
checking the MC_ME_GS[S_SYSCLK] flag. MC_ME_GS[S_SYSCLK] = 2 indicates
that the FMPLL clock is being used as the system clock.

5.2.11 Clock Monitor Unit (CMU)

At startup, the CMU is not initialized and the FIRC is the default system clock.

Stuck at faults on the external oscillator are not detected by CMU at power-on since the
monitoring unit are not initialized and the MCU is still running on the FIRC. It is the
responsibility of the application software to check that the system clock is available and
based on the FXOSC before running any safety element function or setting the FCCU
into "operational" state.

Clocks are supervised by Clock Monitoring Unit (CMU). The CMU is driven by the
FIRC to ensure independence from the monitored clocks. CMU flag errors associated
with conditions due to clock out of a programmable bounds and loss of reference clock. If
a supervised clock leaves the specified range for the device, an error signal is sent to the
FCCU. MPC5748G includes the CMU shown in Table 5-1.

Table 5-1. Clock Monitoring Unit

CMU Monitored Clock

CMU Loss of PLL or FXOSC

The CMU uses the FIRC as the reference clock for independent operation from the
monitored clocks. The purpose is to check for error conditions due to:

• Loss of clock from external crystal (FXOSC)

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

70 NXP Semiconductors

• PLL clock out of a programmable frequency range (frequency too high or too low)
• Loss of PLL clock

The CMU supervises the frequency range of the clock source. In case of abnormal
behavior, the information is forwarded to the FCCU as faults (see FCCU mapping of
faults).

Assumption: [SM_180] For safety-relevant applications, the use of the CMU is
mandatory. If the modules that the CMU monitors are used by the application safety
function, the user shall verify that the CMU is not disabled and its faults are managed by
the FCCU. The FCCU's default condition does not manage the CMU faults, so it must be
configured accordingly. [end]

5.2.11.1 Initial checks and configurations

Assumption: [SM_181] The following supervisor functions are required: [end]

• Loss of external clock

• FMPLL frequency higher than the (programmable) upper frequency reference

• FMPLL frequency lower than the (programmable) lower frequency reference

Rationale: To monitor the integrity of the clock signals

Recommendation: The CMU should be used for clock monitoring. Application software
shall check that the CMU is enabled, and its fault managed by the FCCU.

Implementation hint: In general, the following application dependent configuration
shall be executed before CMU monitoring can be enabled:

• Software configures CMU_CSR[RCDIV] to select a FIRC divider. The divided
FIRC frequency is compared with the FXOSC.

Once the CMU is configured, clock monitoring will be enabled when software writes
CMU_CSR[CME_A] = 1.

5.2.12 Mode Entry (MC_ME)

Assumption under certain conditions:[SM_182] If application uses Low Power (LP)
mode, it is required to monitor the duration of LP mode. If the system does not wakeup
within a specified period, the system will be reset by the monitoring circuitry. [end]

Implementation hint: The SWT may provide the time monitoring.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 71

Rationale: To overcome faults in the wakeup and interrupt inputs to the MC_ME if the
application uses Low Power mode

5.2.13 Power Management Controller (PMC)

The PMC manages the supply voltages for all modules on the device. This unit includes
the internal regulator for the logic power supply (1.25 V) and a set of voltage monitors.
Particularly, it embeds low voltage detectors (LVD) and high voltage detectors (HVD). If
one of the monitored voltages drops below the LVD threshold, a power on reset is
generated. If the monitored voltages exceeds the HVD threshold, a functional reset will
be generated. These reactions are initiated to control erroneous voltages before these
cause a CMF (for correct operating voltage ranges please see the MPC5748G Data
Sheet).

To ensure functional safety, the Power Monitoring Controller (PMC) monitors various
supply voltages of the MPC5748G device:

• The low and high voltage detectors (LVD/HVD) supervise the 1.25 V core supply
(VDD_LV) voltage to verify that it maintains a level between the lower and upper
limits.

• LVD_VDD
• HVD_VDD2

• LVD detects voltages that fall below specified values as shown in the MPC5748G
Data Sheet.

Assumption:[SM_204] It is assumed that the ADCs are used to monitor the bandgap
reference voltage of the PMC. [end]

Apart from the ADC monitoring of the bandgap reference voltage, the use of the PMC for
safety-relevant applications is transparent to the user.

Undervoltage and overvoltage conditions are primarily reported to the MC_RGM, where
they directly cause a transition into a safe state with a power on reset or functional reset,
resepectively. This solution was chosen because safety-relevant voltages have the
potential to disable the failure indication mechanisms of the MPC5748G (the FCCU).
The FCCU error reporting is not utilized since HVD errors are handled by the MC_RGM.

Note

Only for development purposes, different fault reactions can be
programmed in the PMC for HVD error reporting to disable the
MC_RGM reset capabilities.

2. Abbreviations used in the "Power Management Controller (PMC)" chapter of the MPC5748G Reference
Manual.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

72 NXP Semiconductors

Assumption: [SM_185] Software must not disable the direct transition by the MC_RGM
into a safe state due to an overvoltage or undervoltage indication. [end]

Over voltage of any 3.3 V supply shall be monitored externally being described in Power
Supply Monitor (PSM).

5.2.13.1 1.25 V supply supervision

Voltage detectors LVD_VDD and HVD_VDD monitor the digital (1.25 V) core supply
voltage for over and under voltage in relation to a reference voltage. The figure below
depicts the logic scheme of the voltage detectors. In case the core main voltage detector
detects over or under voltage during normal operation of the MPC5748G, a POR is
triggered.

1.25V supply HVD_VDD
LVD_VDD

to MC_RGM
(destructive reset,
functional reset,
interrupt)

Figure 5-1. Logic scheme of the core voltage detectors

By this means, a failing external ballast transistor (stuck-open, stuck-closed) is also
detected.

Assumption under certain conditions: [SM_189] When the system requires robustness
regarding 1.25 V over voltage failures, the external VREG mode is preferably selected.
The internal VREG mode uses a single pass transistor and, therefore, over voltage can not
be shut off redundantly. [end]

Rationale: To enable system level measures to detect or shut down the supply voltage in
case of an destructive (multiple point faults) 1.25 V over voltage incident.

Implementation hint: To reduce the likelihood of destructive damage due to a stuck-
closed external ballast transistor (item/system level component), it may be necessary to
implement two ballast transistors sequential as a system level functional safety integrity
measure. This will load the regulator with two ballast transistors. In order to use two
ballast transistor a ~ 30 % Cg (or smaller, transistor gate capacity) should be selected.
Alternatively, the digital (1.25 V) core supply voltage may be monitored externally and
the power supply shut-down in case of an over voltage.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 73

5.2.13.2 3.3 V supply supervision

Voltage detectors LVD_VDD_IO_A_LO and LVD_VDD_FLA monitor the 3.3 V supply
for under voltage in relation to a reference voltage. The figure below depicts the logic
scheme of the voltage detectors. In case a single LVD detects under voltage during
normal operation of the MPC5748G, a POR is triggered.

3.3V supply
LVD

(in module)
reference voltage

to MC_RGM
(destructive reset,
functional reset,
interrupt)

Figure 5-2. Logic scheme of the 3.3 V voltage detectors

5.2.13.3 5 V supply supervision

Voltage detector LVD_IO_A_HI monitors the 5 V supply for under voltage in relation to
a reference voltage. The figure below depicts the logic scheme of the voltage detector. In
case a single LVD detects under voltage during normal operation of the MPC5748G, a
POR is triggered.

5 V supply
LVD

(in module)
reference voltage

to MC_RGM
(destructive reset,
functional reset,
interrupt)

Figure 5-3. Logic scheme of the 5 V voltage detectors

5.2.14 Memory Protection Units

As a multi-master, concurrent bus system, the MPC5748G provides safety mechanisms to
prevent non-safety masters from interfering with the operation of the core. MPC5748G
also contains mechanisms to handle the concurrent operation of software tasks with
different or lower ASIL classifications.

Recommendation: For ASIL B applications, the SMPU should be used to ensure that
only authorized software tasks can configure modules and can access only their allocated
resources according to their access rights.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

74 NXP Semiconductors

5.2.14.1 System Memory Protection Unit (SMPU)

The System MPU (SMPU) provides memory protection at the crossbar (AXBS). The
SMPU splits the physical memory into 16 different regions. Each AXBS master (Core,
DMA, FlexRay) can be assigned different access rights to each region. The SMPU can be
used to prevent non-safety masters (including DMA or FlexRay controller) from
accessing restricted memory regions.

Memory accesses that have sufficient access control rights are allowed to complete, while
accesses that are not mapped to any region descriptor or have insufficient rights are
terminated with a protection error response. The SMPU implements a set of program-
visible region descriptors that monitor all system bus addresses. The result is a hardware
structure with a two-dimensional connection matrix, where the region descriptors
represent one dimension and the individual system bus addresses and attributes represent
the second dimension.

Assumption: [SM_194] The SMPU shall only be programmed by the core. This software
shall prevent write accesses to the SMPU's registers from all other masters. The SMPU
programming model shall only be accessible to the main core. [end]

5.2.14.2 Initial checks and configurations

Assumption under certain conditions: [SM_195] When bus masters are used (for
example, FlexRay), system level functional safety integrity measures must cover bus
operations to reduce the likelihood of said resources being erroneously modified. [end]

Rationale: Access restriction is protection against unwanted read/write accesses to some
predefined memory mapped address locations.

Implementation hint: The MPUs shall be used to ensure that only authorized software
routines can configure modules and all other bus masters (eDMA, core, FlexRay protocol
controller) can access only their allocated resources according to their access rights. A
correct MPU setup is highly recommended for the FlexRay master.

Access restriction at the MPU level is protection against unwanted read/write accesses to
some predefined memory mapped address locations by specific software routines
(processes).

Rationale: Access restriction at the MPU level is protection against unwanted software
(process) read/write accesses to some predefined memory mapped address locations.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 75

Recommendation: The MPU may be used to ensure that only authorized software
routines (processes) can configure modules and access private resources. All other
software routines can access only their allocated resources according to their access
rights.

5.2.15 Peripheral Bridge (PBRIDGE) protection

The Peripheral Bridge (PBRIDGE) access protection can be used to restrict read and
write access to individual peripheral modules and restrict access based on the master's
access attributes.

• Master privilege level – The access privilege level associated with each master is
configurable. Each master can be configured to be trusted for read and write
accesses.

• Peripheral access level – The access level of each on-platform and off-platform
peripheral is configurable. The peripheral can be configured to require the master
accessing the peripheral to have supervisor access attribute. Furthermore, if the
peripheral write protection is enabled, write accesses to the peripheral are terminated.
The peripheral can also be configured to block accesses from an untrusted master.

Recommendation: Using application software, periodically check the contents of
configuration registers (more than 10 registers) of modules attached to the PBRIDGEs to
help detect faults in the PBRIDGE.

5.2.15.1 Initial checks and configurations

The application software should configure the PBRIDGEs to define the access
permissions for each slave module that requires access protection.

Application software should configure the PBRIDGE to prevent write accesses to the
MC_RGM address space for all masters except the safety-relevant core.

5.2.16 Built-in Hardware Self-Tests (BIST)

Built-in hardware self-test (BIST) or built-in test (BIT) is a mechanism that permits
circuitry to test itself. Hardware supported BIST is used to speed-up self-test and reduce
the CPU load. As hardware assisted BIST is often destructive, it shall be executed before
exiting reset (destructive reset or external reset).

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

76 NXP Semiconductors

To ensure absence of latent faults, the self-test executes both Logic Built-In Self-Tests
(LBIST) and Memory Built-In Self-Test (MBIST) during boot while the device is still in
reset (offline). The boot time BIST includes the scan-based LBIST to test the digital logic
and the MBIST to test all RAMs and ROMs.3

The overall control of the LBISTs and MBISTs is provided by the Self-Test Control Unit
(STCU2). The STCU2 will execute automatically after a power-on reset, external reset,
and destructive reset.

If there is an LBIST failure, or MBIST detects uncorrectable failures, the HW will
prevent further execution. On the other hand, if MBIST detects correctable failures, SW
must decide whether to continue or halt execution. This is true even if several of the
correctable failures combined to create an uncorrectable failure.

Assumption: [SM_197] After startup and before the safety application starts, application
software shall confirm all LBISTs and MBISTs finished successfully and no further
errors are flagged. [end]

Assumption:[SM_209] Software shall check after MBIST execution whether two
reported single bit errors belong to the same address and thus constitute a multi-bit error.
MBIST does not guarantee detection of all multi-bit errors on its own. [end]

Note

Implementation hint: Software can read the following
registers to check the BIST results:

• STCU_LBS to determine which offline LBISTs failed

• STCU_LBE to determine which offline LBISTs did not
finish

• STCU_MBSL, STCU_MBSM and STCU_MBSH to
determine which offline MBISTs failed

• STCU_MBEL, STCU_MBEM and STCU_MBEH to
determine which offline MBISTs did not finish

• STCU_ERR_STAT – To check for internal STCU failure

Not every fault expresses itself immediately. For example, a fault may remain unnoticed
if a component is not used or the context is not causing an error or the error is masked.

3. This does not include flash memory.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 77

If faults are not detected over a long time (latent faults), they can pile up once they
propagate. ISO 26262 requires 90% latent-fault metric for ASIL D, 80% for ASIL C, and
60% for ASIL B. Typically hardware assisted BIST is therefore used as a safety integrity
measure to detect latent faults.

The MPC5748G is equipped with a Built-in hardware self-test:

• System SRAM (MBIST, executed at boot-time, latent failure measure)

• Logic (LBIST, executed at boot-time, latent failure measure)

• Flash memory integrity self check (executed at least once per FTTI, single-point
failure measure)

• Flash memory margin read (executed after every programming operation or executed
at least once per FTTI, latent failure measure and single-point failure measure)

Boot-time tests (MBIST, LBIST) are performed after the occurrence of a destructive or
external reset, unless they are disabled. All boot-time tests are executed before
application software starts executing. If failed, the MCU will remain in Safe stateMCU.

All tests may be performed without dedicated external test hardware.

The following safety integrity measure validates the ECC fault signalling and is executed
by software to detect single-point faults, although no built-in hardware support is used:

• Flash memory: ECC Fault Report Check: Software can read from the Flash a set of
test patterns (provided by NXP) to test the integrity of faults reported by the ECC
logic and captured in the MEMU and FCCU (shall be performed at startup).

5.2.16.1 Memory Built-In Self-Test (MBIST)

The SRAM BIST (MBIST) runs during initialization (during boot).

NOTE
In principle, the MBIST can be run at any time, but a reset will
be generated by the MCU after the MBIST completes.

5.2.16.2 Logic Built-In Self-Test (LBIST)

The Logic Built-In Self-Test (LBIST) runs during initialization (during boot).

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

78 NXP Semiconductors

NOTE
A destructive reset should be triggered at least once per L-FTTI
(for example, once per drive cycle) to ensure LBIST is
performed.

5.2.16.3 Flash memory array integrity self check

The flash memory array integrity self check runs in flash memory user test mode and is
initiated by software. When the check has completed, software verifies the result (see
Flash memory).

5.2.16.4 Flash memory ECC logic check

The flash memory ECC logic check runs in flash memory user test mode. It is executed
in software and supported by hardware.

5.2.16.5 Flash memory ECC fault report check

The flash memory ECC fault report check is executed in software (refer to Flash
memory).

5.2.17 End-to-end ECC (e2eECC)

The MPC5748G includes end-to-end ECC (e2eECC) support for improved functional and
transient fault detection capabilities. Memory-protected by the traditional ECC/EDC
generates and checks additional error parity information local to the memory unit to
detect and/or correct errors which have occurred on stored data in the memory.

In contrast, in the MPC5748G e2eECC protected memory, the bus master initiates the
data write and generates ECC checkbits based on 29-bit address and 64-bit data fields.
The data including the checkbits are transferred from the bus master to the appropriate
bus slave. Both data and checkbits are stored into the memory. When the bus master
initiates a read of previously written memory location, the read data and checkbits are
passed onto the system bus interconnection. The bus master captures the read data and
associated checkbits, performs the ECC checkbit decode and syndrome generation and
performs any needed single-bit correction.

The e2eECC provides:

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 79

• ECC for master-slave accesses via the crossbar

• ECC is stored in the memories on write operations and validated by the crossbar
master on every read operation

• Every memory with ECC

• ECC bits are stored alongside data in Flash memory and RAM. This includes
Flash array, RAM array, CAN RAM, DMA RAM array, FlexRay RAM array.

• - ECC on address and data

• SECDED covers 64-bit data and 29-bit address bits

All-X errors in memory have special handling as it is thought that there may be a higher
probability of All-X errors than random wrong bits.

The ECC used for flash memory marks All-0 as being in error, but allows All-1 situations
to take into consideration reading erased, uninitialized flash memory.

The ECC for RAM, without inclusion of address, mark All-X as errors.

The ECC for RAM, with inclusion of address, cannot guarantee that All-X is an error for
any address because All-0 and All-1 will be correct codewords for approximately every
256th address. In these RAMs, at more than every 2nd address, All-1 and All-0 will be
uncorrectable errors. It is possible to read such an address where All-X is uncorrectable
periodically to determine situations in which an error causes a whole RAM block to
become All-X. Testing All-X in RAM defines an algorithm to determine such addresses.

5.2.18 Interrupt Controller (INTC)

The Interrupt Controller (INTC) provide the ability to prioritize, block, and direct
Interrupt Requests (IRQs). It can fail by dropping or delaying IRQs, directing them to the
wrong core or handler, or by creating spurious ones. No specific hardware protection is
provided to reduce the likelihood of spurious or missing interrupt requests, caused by
faults before the IRQ, such as by Electromagnetic Interference (EMI) on the interrupt
lines, bit flips in the interrupt registers of the peripherals, or a fault in the peripherals. The
Interrupt Controller (INTC) can drop, delay or create spurious interrupts.

Assumption:[SM_198] Application software will detect the critical failure modes of the
INTC for all interrupts not supervised by the high priority interrupt monitor.[end]

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

80 NXP Semiconductors

Note

Implementation hint: One way to detect spurious or multiple
unexpected interrupts is for the application software to read the
interrupt status register of the corresponding peripheral before
executing the Interrupt Service Routine (ISR). This checks that
the respective peripheral has really requested an interrupt.

5.2.18.1 Periodic low latency IRQs

The SWT can be configured to start when the interrupt request is generated and the
application software can read the timer value to determine when the ISR is entered. This
method can be used to determine whether the measured interrupt latency exceeds the
requirements.

Assumption:[SM_199] Periodic low latency IRQs will use a running timer/counter to
ensure their call period is expected.[end]

5.2.18.2 Non-Periodic low latency IRQs

Non-periodic, low latency IRQs can be handled in the methods described below.

A supervisor module configured to react to any one of the IRQ signals checks that the
INTC reacts with an immediate activation of the core's IRQ and the correct IRQ vector.
This will only be able to supervise the highest priority IRQ.

5.2.18.3 Runtime checks

Assumption under certain conditions: [SM_300] Applications that are not resilient
against spurious or missing interrupt requests may need to include detection or protection
measures on the system level. [end]

Rationale: To manage spurious or missing interrupt requests.

Implementation hint: A possible way to detect spurious interrupts is to check
corresponding interrupt status in the interrupt status register (polling) of the related
peripheral before executing the Interrupt Service Routine (ISR) service code.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 81

5.2.19 Enhanced Direct Memory Access (eDMA)

The eDMA provides the capability to perform data transfers with minimal intervention
from the core. It supports programmable source and destination addresses and transfer
size.

Failures outside of the eDMA can lead to faulty eDMA operation, such failures have to
be detected by software.

5.2.19.1 Runtime checks

Assumption:[SM_301] The eDMA will be supervised by software which detects
spurious, too often, or constant activation.[end]

Rationale: Prevent the eDMA from stealing transfer bandwidth on the AXBS, as well as
prevent it from copying data at a wrong point in time

Implementation hint: Possible software implementations to protect against spurious or
missing interrupts are as follows:

• Software counts the number of eDMA transfers triggered inside a control period and
compare this value to the expected value.

• If the eDMA is used to manage the analog acquisition with the BCTU and ADC, the
number of the converted ADC channels is saved into the BCTU FIFO together with
the acquired value. The eDMA transfers this value from the BCTU FIFO to a
respective SRAM location. Spurious or missing transfer requests can be detected by
comparing the converted channel with the expected one.

Assumption under certain conditions:[SM_202] Applications that are not resilient to
spurious, or missing functional safety-relevant, eDMA requests can not use the PIT
module to trigger functional safety-relevant eDMA transfer requests. [end]

Rationale: To reduce the likelihood of a faulty PIT (which is not redundant) from
triggering an unexpected eDMA transfer

5.2.19.1.1 eDMA transfers

In cases where the eDMA is used to transfer data (for example, to peripherals such as the
GPIO or the FlexCAN), additional software measures are needed since both halves of the
eDMA Channel Mux will not implicitly supervise each other.

Assumption:[SM_304] If safety-relevant software is using the eDMA to transfer data to
a peripheral or the RAM, the following holds:[end]

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

82 NXP Semiconductors

• Preferably, "always on" channels of the eDMA Channel Mux shall not be used.
Instead, the eDMA shall be triggered by software.

• If "always on" channels are used, their failure has to be detected by software. In this
case, software must ensure that the eDMA transfer was triggered as expected at the
correct rate and the correct number of times. This test shall detect unexpected,
spurious interrupts.

5.2.20 System timer module

5.2.20.1 Runtime checks

In case a failure in the System Timer Module (STM) causes a violation of the safety goal,
one of the two conditions below shall be satisfied when the STM is used in the
application software.

Assumption: [SM_205] At every STM interrupt, the IRQ handler shall compare the
elapsed time since the previous interrupt versus a free running counter to check whether
the interrupt time is consistent with the STM setting. [end]

Assumption:[SM_206] The STM IRQ handler shall be under SWT protection.[end]

Implementation hint:In the first option, the SWT can be used to measure the time
between the STM interrupts by reading the SWT counter on consecutive interrupts and
then comparing the difference with the STM measured time. In the second option, the
application can set the SWT to a time just greater than the STM measured time and use
the STM IRQ to service the SWT.

5.2.21 Periodic interrupt timer

5.2.21.1 Runtime checks

Assumption: [SM_207] When using PIT module, the PIT module should be used in such
a way that a possible functional safety-relevant failure is detected by the Software
Watchdog Timer (SWT). [end]

Rationale: To catch possible PIT failures

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 83

Recommendation under certain conditions: [SM_208] If the PIT is used by the
application software in a safety function, a checksum of its configuration registers using
the CRC must be calculated and compared with the expected one to verify that the PIT
configuration is correct. [end]

The application software shall invoke this test once per FTTI/PST.

Rationale: To check that the PIT remains at its expected configuration

5.2.22 System Status and Configuration Module

5.2.22.1 Initial checks and configurations

Recommendation: Since the software integrated in the BAF has not been developed in
an ISO 26262 or IEC 61508 compliant development process, system level measure must
be taken to ensure system integrity or disable use of the BAF.

Implementation hint: After reset, the BAF is automatically executed; however, once the
BAF has finished it branches to RAM and disables the BAF region so that it can no
longer be executed by the core. The PFLASH_PFCR3[BAF_DIS] field controls
executable access to the BAF (Boot Assist Flash) region of the flash. Once this field is
set, attempted instruction accesses targeting the BAF region are aborted and terminated
with a system bus error. Data-type accesses to the BAF region are not affected by this
field. Once this field is set, it becomes a read-only field and can only be cleared by
hardware reset, and any subsequent write attempts to modify this field are ignored with
an error-free data transfer termination.

5.2.23 Memory Error Management Unit (MEMU)

The MEMU collects and reports error events associated with ECC logic used on system
RAM, peripheral RAM and flash memory. The MEMU stores the addresses where ECC
errors occurred. The MEMU also reports whether the error is correctable vs.
uncorrectable. New correctable errors, and each uncorrectable error (even if known), will
cause a report to the FCCU. All errors the MEMU collects are stored in reporting tables
that are accessible through the MEMU register interface. The application software can
write known error addresses into the MEMU reporting table to prevent redundant
reporting of those errors to the FCCU in the event the same addresses are accessed again.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

84 NXP Semiconductors

5.2.24 Flash memory

The MPC5748G provides 6 MB of programmable non-volatile (NVM) flash memory
with ECC which can be used for instruction and/or data storage.

The correct operation of ECC logic is guaranteed by EDC after ECC and latent faults are
detected by the execution of the LBIST.

5.2.24.1 EEPROM

The MPC5748G provides blocks of flash memory for EEPROM emulation. ECC events
detected on accesses to the EEPROM flash memory blocks are reported to the Memory
Management Unit (MEMU). Single-bit errors are corrected and signaled to the MEMU.
Multi-bit errors are replaced by a fixed word (representing an illegal instruction), and are
forwarded to the MEMU.

Assumption:[SM_114] The software using the EEPROM for storage of information will
use checks to detect incorrect data returned from the EEPROM emulation.[end]

Typically, a CRC will be stored to validate the data.

5.2.24.2 Initial checks and configurations

The flash memory array integrity self check detects possible latent faults affecting the
flash memory array, including potential data retention issues, or the logic involved in
read operations (e.g. sense amplifiers, column mux's, address decoder, voltage/timing
references). It calculates a MISR signature over the array content and thus validates the
content of the array as well as the decoder logic. The calculated MISR value is dependent
on the array content and must be validated by software.

Assumption: [SM_212] Before executing any safety function, a flash memory array
integrity self check should be executed. The calculated MISR value is dependent on the
array content and therefore has to be validated by system level application software.[end]

Rationale: To check the integrity of the flash memory array content

Implementation hint: This test may be started by application software: its result may be
validated by reading the corresponding registers in the flash memory controller after it
has been finished (see "Array integrity self check" section in the "Flash memory" chapter
of the MPC5748G Reference Manual).

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 85

5.2.24.3 Runtime checks

The application software checks the status and contents of the programmed sector at the
end of a programming operation. The safety mechanism can be based on a read-back
scheme, where the written word is read back and compared with the intended value.
Alternatively, a CRC check can also be implemented to validate the data.

Assumption: [SM_216] According to the specific Flash usage by the application
software, a software test should be implemented to check for potential multi-bit errors
introduced by permanent failures in Flash control logic (e.g. read pump, read timing,
Vref, etc.).[end]

Assumption: [SM_217] A SW safety mechanism shall be implemented to ensure the
correctness of any write operation to both Flash and Overlay.[end]

Rationale: To check that the written data is coherent with the expected data

This test should be performed after every write operation or after a series of write
operations to the flash memory

Implementation hint: The programming of flash memory may be validated by checking
the value of C55FMC_MCR[PEG]. Furthermore, the data written may be read back, then
checked by software if identical to the programmed data. The data read back may be
executed in Margin Read Enable mode (C55FMC_UT0[MRE] = '1'). This enables
validation of the programmed data using read margins that are more sensitive to weak
program or erase status.

Assumption: [SM_219] Flash memory ECC failure reporting path should be checked to
validate if detected ECC faults are correctly reported. [end]

Rationale: The intention of this test is to assure that failure detection is correctly
reported.

Implementation hint: The flash memory ECC fault report check is executed in software.
The test consists of software reading from the flash memory UTest area (see "UTEST
flash memory map" table in the "Memory map" chapter of the MPC5748G Reference
Manual) a set of test patterns to test the integrity of the ECC logic fault reporting path to
the MEMU and FCCU (executed at start-up, latent failure measure).

5.2.25 Body Cross Triggering Unit (BCTU)

The ADC BCTU allows automatic generation of ADC conversion requests with minimal
CPU intervention. The BCTU generates some triggers based on input events from eMIOS
and PIT.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

86 NXP Semiconductors

The BCTU can be used if the application needs to synchronize the reading of some ADC
inputs with MCU events (for example, PWMs and/or timers).

5.2.25.1 Runtime checks

Assumption:[SM_220] The BCTU must be properly configured so output triggers are
generated within the desired time schedule with respect to the input event(s). [end]

Rationale: To reduce the likelihood of erratic output trigger generation.

For each trigger, a set of ADC commands and pulses to be generated can be defined.

If the application safety function includes reading of synchronized inputs with events (for
example, PWMs, timers, or any combination), the system integrator can use the BCTU
module for this purpose. The required software needed is listed in Synchronize
sequentially read inputs.

For a detailed description of BCTU operation (triggered and sequential mode), its
configuration, and use, see the MPC5748G Reference Manual.

5.2.25.2 Synchronize sequentially read inputs

Assumption:[SM_221] If the BCTU is part of the application safety function, the safety
integrity is achieved by a mix of hardware mechanisms and software safety integrity
functions implemented at the application level, examples of which are: [end]

• Example: BCTU ADC conversion data overrun test
• Example: BCTU ADC channel cross-check
• Example: BCTU timer command cross-check

NOTE
These functions are mandatory only if the BCTU is used in the
application.

5.2.25.2.1 Example: BCTU ADC conversion data overrun test

In case new ADC conversion data is available before the old data has been read, the old
data will be over-written, an overrun indication flagged, and the application software may
have to handle the error indication.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 87

Rationale: Tests if all the triggers configured within a control period have had their ADC
conversion data read.

Implementation hint: The Body Cross Triggering Unit Module Status register
(BCTU_MSR) shows information about the overrun status. When the BCTU detects an
overrun error, an interrupt is generated.

5.2.25.2.2 Example: BCTU ADC channel cross-check

The BCTU stores in registers BCTU_ADC0DR and BCTU_ADC1DR both the value
provided by each ADC conversion and the channel number. Application software checks
the ADC channel number sequence against what is expected.

Rationale: To detect if an incorrect channel has been acquired.

This safety integrity function is required only when reading analog signals.

5.2.25.2.3 Example: BCTU timer command cross-check

Application software configures a timer channel (eMIOS_n) to count the number of timer
commands generated within a BCTU control period and checks the number against the
expected count.

Rationale: To check the correctness of the number of generated commands.

5.2.26 Error reporting path tests

It is possible to use fault injection to check the correct operation of several reporting
paths from supervisors to the FCCU. The FCCU input table specifically lists those inputs
in the table “FCCU non-critical fault mapping” in the MPC5748G Reference Manual.

Other measures in that column (except LBIST) can also be used for a full error reporting
path check if so desired. It should be noted that LBIST covers the logic of the error
reporting path as long as it does not cross an LBIST partition boundary. If that happens, a
small amount of logic remains uncovered by the LBISTs.

These fake faults can also be used during development to test whether software
programmed to handled such faults works correctly.

Additionally, ECC errors can be injected into Flexray/CAN SRAM and System SRAM/
local RAMs/Caches to check the reporting of such errors through the MEMU to the
FCCU.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

88 NXP Semiconductors

A multiple cell failure caused for example, by a neutron or alpha particle or a short circuit
between cells may cause three or more bits to be corrupted in an ECC-protected word. As
result, either the availability may be reduced or the ECC logic may perform an additional
data corruption labeled as single-bit correction. This is prevented within the design of
MPC5748G by the use of bit scrambling (column multiplexing) which effects, that
physically neighboring columns of the RAM array do not contain bits of the same logical
word but the same bit of neighboring logical words. Thus the information is logically
spread over several words causing only single-bit faults in each word which can be
correctly corrected by the ECC. MPC5748G has a multiplexor factor of eight for its
system RAM multiplexing adjacent analog bit lines to an analog sense amplifier. It is
always enabled and needs no configuration.

5.2.27 Glitch filter

An analog glitch filter is implemented on the reset signal of the MPC5748G. A selectable
(WKPU_NCR[NFE0]) analog glitch filter is implemented on the NMI-input. 30 external
wake-up sources can be configured to have an analog filter. 32 external interrupt sources
can be configured to have a digital filter to reject short glitches on the inputs. These
filters are used to reduce noise and transient spikes in order to reduce the likelihood of
unintended activation of the reset, wake-up, or interrupt inputs.

5.2.28 Register Protection module (REG_PROT)

The Power Architecture® supports two levels of privilege for program execution: user
mode and supervisor mode. Only the supervisor mode allows the access to the entire
CPU register set, and the execution of a subset of instructions is limited to supervisor
mode only. In user-mode, access to most registers including system control registers is
denied. It is intended that most parts of the software be executed in user-mode so that the
MPC5748G is protected from errant register changes made by other user-mode routines.
User versus supervisor mode can also be used as a decision criteria in the MPUs and the
peripheral access control (PAC) of the PBRIDGES.

In addition, all peripherals, processing modules and other configurable IP is protected by
a REG_PROT module, which offers a mechanism to protect individual address locations
in a module under protection from being written (for example, to handle the concurrent
operation of software tasks with different or lower functional safety integrity level). It
includes the following levels of access restriction:

• A register cannot be written once Soft Lock Protection is set. The lock can be cleared
by software or by a system reset.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 89

• A register cannot be written once Hard Lock Protection is set. The lock can only be
cleared by a system reset.

• If neither Soft Lock nor Hard Lock is set, the Register Protection module may restrict
write accesses for a module under protection to supervisor mode only.

Recommendation: Only hardware related software (OS, drivers) should run in
supervisor mode.

If registers are protected against random bit flips they shall also be protected against
accidental SW writes (SW register protection).

5.2.28.1 Runtime checks

Assumption: [SM_225] For safety relevant applications, all configuration registers, and
registers that aren't modified during application execution, must be protected with a Hard
Lock. [end]

Rationale: Hard Lock is the last access protection against unwanted writes to some
predefined memory mapped address locations.

Implementation hint: Register Protection address space is inside the memory space
reserved for the peripherals (see the "Register protection configuration" section of the
MPC5748G Reference Manual). Each peripheral register that can be protected through
the Register Protection module has a Set Soft Lock bit reserved in the Register Protection
address space. This bit is asserted to enable the protection of the related peripheral
registers. Moreover, the Hard Lock Bit (REG_PROT_GCR[HLB] = 1) should be set for
best write protection.

5.2.29 Wake-Up Unit (WKPU) / External NMI

Assumption under certain conditions:[SM_226] If external NMI and Wake-up are used
as a safety mechanism, especially if waking up within a certain timespan or at all is
considered safety-relevant, it is required to implement corresponding system level
measures to detect latent faults in the WKPU. [end]

Rationale: To test the analog filter of the WKPU for external NMIs and wakeup events.

Implementation hint: To test the analog filter of the WKPU for external NMIs,
application software may configure the NMI during startup to cause only a critical
interrupt, then trigger the external NMI and check that the critical interrupt occurred.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

90 NXP Semiconductors

5.2.30 Crossbar Switch (AXBS)

The multi-port AXBS switch allows for concurrent transactions from any master (cores,
DMA, FlexRay) to any slave (memories, peripheral bridge). The AXBS module includes
a set of configuration registers for arbitration parameters, including priority, parking and
arbitration algorithm. Faults in the configuration registers affect slave arbitration, and
thereby potentially software execution times, so software countermeasures must detect
these faults.

Assumption: [SM_227] Masters of the AXBS which are not safety-related shall have a
lower arbitration priority on the AXBS compared to safety-related masters. [end]

5.2.30.1 Runtime checks

Application software shall check the configuration of AXBS once after programming.
The application software shall check the AXBS configuration once after programming
but it must also detect failures of the AXBS when safety-relevant functions are running.

The detection of failures of the AXBS configuration can be achieved as a combination of
periodic readback of the configuration registers and control flow monitoring using the
SWT. The SWT is needed to cover those failure conditions leading to a complete lock-
out of AXBS masters. The need for periodic configuration readback depends on how
stringent the control flow monitoring is implemented.

The application software shall detect AXBS configuration failures once per FTTI/PST.

Assumption: [SM_228] Within the FTTI, application software shall detect failures of the
AXBS configuration affecting system performance by using the configuration readback
and SWT monitoring described above.[end]

5.2.31 System Integration Unit Lite2 (SIUL2)

Assumption:[SM_232] The integrity of functional safety-relevant periphery will mainly
be ensured by application level measures (for example, connecting one sensor to different
I/O modules, sensor validation by sensor fusion, and so on). [end]

Functional safety-relevant peripherals are assumed to be used redundantly in some way.
Different approaches can be used, for example, by implementing replicated input (for
example, connect one sensor to two DSPIs or even connect two sensors measuring the
same quantity to two ADCs) or by crosschecking some I/O operations with different
operations (for example, using sensor values of different quantities to check for validity).

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 91

Also, intelligent self-checking sensors are possible if the data transmitted from the
sensors contains redundant information in the form of a checksum, for example.
Preferably, the replicated modules generate or receive the replicated data using different
coding styles (for example, inverted in the voltage domain or using voltage and time
domain coding for redundant channels). Safety system developers may choose the
approach that best fits their needs.

Assumption: [SM_233] Comparison of redundant operation of I/O modules is the
responsibility of the application software, as no hardware mechanism is provided for this.
[end]

Implementation hint: Possible measures could involve using different coding schemes
within each redundant I/O channel (for example, inverted signals, different time periods).

Implementation hint: Possible measures could be using different replicated modules
(for example, modules configured for PWM or timer operation) to implement multiple
independent and different channels.

5.2.31.1 Digital inputs

Assumption under certain conditions:[SM_237] When safety functions use digital
input, system level functional safety mechanisms have to be implemented to achieve
required functional safety integrity.[end]

5.2.31.2 Hardware

Implementation hint: Digital inputs used for functional safety may need to be acquired
redundantly. To reduce the risk of CMFs, the redundant channels may not use adjacent
GPIOs (see Causes of dependent failures).

Implementation hint: If sufficient diagnostic coverage can be obtained by a plausibility
check on a single acquisition for a specific application, that check can replace a
redundant acquisition.

5.2.32 Analog-to-Digital Converter (ADC)

Parts of the Successive Approximation Register (SAR) Analog-to-Digital Converters
(ADCs) of the MPC5748G do not provide the functional safety integrity to achieve high
functional safety integrity targets. Therefore, system level safety measures are required.

MPC5748G modules

Safety Manual for MPC5748G, Rev. 3, 08/2017

92 NXP Semiconductors

5.2.32.1 Initial checks and configurations

Assumption under certain conditions:[SM_130] When the Analog-to-Digital
Converter (ADC) of the MPC5748G are used in a safety function, suitable system level
functional safety integrity measures must be implemented after reset (external reset or
destructive reset) before starting the respective safety function to ensure ADC integrity.
[end]

Rationale: To check the integrity of the ADC modules against latent failures.

Implementation hint: After reset (external or destructive reset), but before executing
any safety function, perform the gain and offset calibration of the ADC using application
software to detect latent faults.

5.3 Communications

5.3.1 Redundant communication

On their own, the integrated communication controllers (for example, DSPI, LINFlexD)
do not provide the functional safety integrity that IEC 61508 series and ISO 26262
require for high functional safety integrity targets. As these communication protocols
often deal with low complex slave communication nodes, higher level functional safety
protocols as described in Fault-tolerant communication protocol may not be feasible.
Therefore, appropriate communication channel redundancy may be required. Multiple
instances of communication controllers may be used to build up a single fault-robust
communication link.

Implementation hint: If communication over the following interfaces is part of the
safety function, redundant instances of the hardware communication controller should be
used, preferably using different data coding (for example, inversion):

• Deserial Serial Peripheral Interface (DSPI)

• LINFlexD Communication Controller

These communication protocols do not contain special functional safety mechanisms
other than what is included in their protocol specifications. The system level
communication architecture needs to provide the functional safety mechanisms on the
interface of the modules to meet functional safety requirements.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 93

5.3.2 Fault-tolerant communication protocol

Parts of the integrated FlexRay, LINFlexD, FlexCAN, DSPI/SPI, I2C, SAI/I2S,
MLB150, USB, and Ethernet communication channels do not on their own provide the
functional safety integrity that the IEC 61508 series and ISO 26262 require for high
functional safety integrity targets.

Implementation hint: If communication over the following interfaces is part of the
functional safety function, a software interface with the hardware communication
channel, in accordance with the IEC 61784-3 or IEC 62280 series, is required for the
following:

• FlexRay Communication Controller

• FlexCAN Communication Controller

• Universal Asynchronous Communication Controller (LINFlexD)

FlexRay, FlexCAN, and LINFlexD do not have specific functional safety mechanisms
other than ECC protection of SRAM arrays and what is included in their protocol
specifications. The application software, middleware software, or operating system needs
to provide the functional safety mechanisms on the interface of the IP modules to meet
functional safety requirements.

Typically mechanisms are:

• end-to-end CRC to detect data corruption

• sequence numbering to detect message repetitions, deletions, insertions, and
resequencing

• an acknowledgement mechanism or time domain multiplexing to detect message
delay

• sender identification to detect masquerade

FlexRay and CAN, both of which feature modes to be clocked directly by the XOSC, will
not make use of these modes in normal operation unless effects of clock glitches are
sufficiently detected by the applied FT-COM layer.

As the 'black channel' typically includes the physical layer (for example, communication
line driver, wire, connector), the functional safety software protocol layer is an end-to-
end functional safety mechanism from message origin to message destination.

Communications

Safety Manual for MPC5748G, Rev. 3, 08/2017

94 NXP Semiconductors

An appropriate functional safety software protocol layer (for example, Fault Tolerant
Communication Layer, FTCOM, CANopen Safety Protocol) may be necessary to ensure
the failure performance of the communication process. Software protocol layer
implements a software interface with the hardware communication channel in accordance
with the IEC 61784-3 or IEC 62280 series (so-called 'black channel').

An alternative approach to improve the functional safety integrity of FlexCAN may be to
use multiple instances of the FlexCAN channels and use an appropriate protocol to
redundantly communicate data (for example, using the CANopen Safety protocol). This
approach communicates redundant data (for example, one message payload inverted, the
other message payload not inverted) using a different communication controller.

Due to the limited bandwidth and the point-to-point communication architecture for
LINFlexD, only a simplified functional safety protocol layer may be required.

5.4 Additional configuration information

5.4.1 Stack

Stack overflow and stack underflow is a common mode fault due to systematic faults
within application software. A stack overflow occurs when using too much memory
(pushing too much data) on the stack. A stack underflow occurs when reading (popping)
too much data from memory. The stack contains a limited amount of memory, often
determined during development of the application software. When a program attempts to
use more space than is reserved (available) on the stack (when accessing memory beyond
the stack's upper and lower bounds), the stack is said to overflow or underflow, typically
resulting in a program crash.

It may be beneficial to implement a measure supervising the stack and respectively
generating a fault signal in case of stack overflow and stack underflow.

5.4.1.1 Initial checks and configurations

Assumption under certain conditions:[SM_103] When stack underflow and stack
overflow due to systematic faults within the application software endangers the item
(system) level, functional safety mechanisms may be implemented to detect stack
underflow and stack overflow faults. [end]

Rationale: To have a notification in case of stack overflow or stack underflow error

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 95

Implementation hint: Core debug support features software facilities that can be used
for stack limit checking when not used for debugging. The DAC1 and DAC2 resources
maybe used for incremental stack overflow or stack underflow detection when not being
used as a hardware or software debug resource. Stack limit checking is available
regardless of EDM or IDM mode, and when resources used for stack limit checking are
owned by software, will utilize a DSI or machine check exception.

A data address compare (DAC) exception is signaled when there is a data access address
match as defined by the debug control registers and data address compare events are
enabled. This could either be a direct data address match or a selected set of data
addresses, or a combination of data address and data value matching. The debug interrupt
is taken when no higher priority exception is pending.

Software-owned stack limit checking does not require IDM to be set. Hardware owned
stack limit checking requires EDM to be set. When stack limit checking is enabled, and
DAC resources used for stack limit checking are owned by software, DAC events are not
generated for resources configured to perform stack limit checking, and no DBSR DAC
status flag will be set due to a detected stack limit violation.

Instead, depending on the processor mode, a data storage interrupt or a machine check
exception is signaled. When stack limit checking is enabled, and DAC resources used for
stack limit checking are owned by hardware, DAC events will be generated for resources
configured to perform stack limit checking, and the EDBSR0 DAC status flag will be set
due to a detected stack limit violation, causing entry into debug halted mode in the same
way as a DAC exception normally does. The only difference is that qualification of the
access address is performed as discussed in the next paragraph.

Incremental stack limit checking may be implemented using two data address
watchpoints defined by DAC1 and DAC2. As hardware does not qualify a load or store
access address with the use of GPR R1 as the base or index register used to compute an
effective address when a load or store instruction is executed, special care has to be taken
the watchpoints are not used elsewhere in the application software (guard band address
range). This measure does only enable incremental stack overflow, as it only detects data
addressing of the limit (upper and lower) address. Addressing going beyond the limits
will be undetected. When DAC resources configured to perform incremental stack limit
checking are not owned by hardware, if a stack limit violation occurs when performing
the load or store, the access is aborted and an error report machine check is generated,
with MCSRR0 pointing to the address of the load or store access which generated the
stack overflow/underflow. If DAC resources configured to perform stack limit checking
are owned by hardware, then a normal DAC event is generated (but qualified with use of
GPR R1) and debug mode entry will occur in the same manner as for a non-stack limit
DAC event.

Additional configuration information

Safety Manual for MPC5748G, Rev. 3, 08/2017

96 NXP Semiconductors

When stack limit checking is enabled for a stack access, and DACn resources are owned
by hardware, the EDBSR0 DAC status flag will be set due to a detected stack limit
violation, to cause entry into debug halted mode or to generate a watchpoint, or both, i.e.
after the access has completed.

Independent limit checks for supervisor and user accesses may be implemented by
allocating independent DACn resources to each, or a single limit may be applied using a
single DACn resource. If more than one DACn resource is utilized, a DAC hit on any
resource utilized for stack limit checking will cause the corresponding stack limit
exception action to occur. If both a hardware-owned and a software-owned resource
generate a stack limit exception for a given load or store, the software resource will have
priority, since it is detected prior to completion of the access, and the access is aborted,
thus the hardware event will not occur.

Note

For DAC1 and DAC2, access type (read, write) control is part
of DBCR0.

5.4.2 MPC5748G configuration

Assumption: [SM_240] It is required that application software verifies that the
initialization of the MPC5748G is correct before activating the safety-relevant
functionality.[end]

Assumption: [SM_241] It is required that application software checks the configuration
of the SSCM once after boot.[end]

Recommendation: It is recommended that after the boot, application software perform
an intended access to an unimplemented memory space and check for the expected abort
to occur.

Rationale: To detect erroneous addressing and fault in address and bus logic.

Recommendation: It is recommended that unused interrupt vectors point, or jump, to an
address that is illegal to execute, contains an illegal instruction, or in some other way
causes detection of their execution.

Recommendation: It is recommended that only hardware related software (OS, drivers)
run in supervisor mode.

Rationale: To reduce the risk accidental writes to configuration registers affecting the
execution of the MPC5748G's safety function or disable the safety mechanism due to
their change.

Chapter 5 Software Requirements

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 97

Recommendation: All configurations registers, and registers that aren't modified during
application execution, should be protected with Hard Lock Protection (if that option is
available for the register) or using Peripheral Access Control. Configuration registers,
and registers which have limited writes every trip time, should be protected with soft-lock
protection.

Rationale: To reduce the risk accidental writes configuration registers affecting the
execution of the MPC5748G's safety function or disable the safety mechanism due to
their change.

Implementation hint: Each peripheral register that may be protected through register
protection has a Set Soft Lock bit reserved in the Register Protection address space. This
bit may be asserted to enable the protection of the related peripheral registers. Moreover,
the Hard Lock Bit (REG_PROT_GCR[HLB] = 1) may be set for best write protection.

Additional configuration information

Safety Manual for MPC5748G, Rev. 3, 08/2017

98 NXP Semiconductors

Chapter 6
Failure Rates and FMEDA

6.1 Failure rates
In order to analyze and quantify the effectiveness of the MPC5748G integrated safety
architecture to handle random hardware failures, the inductive analysis method of
FMEDA (Failure Modes Effects and Diagnostic Analysis) was performed during the
development of the MPC5748G. The following methods for deriving the base failure
rates of the MPC5748G were used as input to the FMEDA:

• Permanent faults (Die & Package): IEC TR 62380 - Reliability data handbook –
Universal model for reliability prediction of electronics components, PCBs and
equipment

• Transient faults (Die): JEDEC Standard JESD89 - Measurement and Reporting of
Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor
Devices

6.2 FMEDA
In order to support the integration of the MPC5748G into safety-related systems and to
enable the safety system developer to perform the system level safety analysis, the
following documentation is available:

• FMEDA - Inductive analysis of the MPC5748G enabling customization of system
level safety mechanisms, including the resulting safety metrics for ISO 26262
(SPFM, LFM and PMHF) and IEC 61508 (SFF and β-factor βIC)

• FMEDA Report - Describes the FMEDA methodology and safety mechanisms
supported in the FMEDA, including source of failure rates, failure modes and
assumptions made during the analysis.

The FMEDA and FMEDA report are available upon request.

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 99

6.2.1 Module classification

For calculating the safety metrics for ISO 26262 (Single-Point Failure Metric (SPFM),
Latent Failure Metric (LFM) and Probabilistic Metric for random Hardware Failures
(PMHF)) and for IEC 61508 (Safe Failure Fraction (SFF) and ßIC factor) the modules of
the MPC5748G are classified as follows:

• MCU Safety Functions: All modules which can directly influence the correct
operation of the MCU Safety Functions.

• Safety Mechanism: All modules which detect faults or control failures to achieve or
maintain a safe state. These modules cannot independently directly influence the
correct operation of one of the safety functions in the case of a single fault.

• Peripheral: All modules which are involved in I/O operation. Peripheral modules are
usable by qualifying data with system level safety measures or by using modules
redundantly. Qualification should have a low risk of dependent failure. In general,
Peripheral module safety measures are implemented in system level software.

• Debug Functions: All modules which are not safety related, i.e. none of their
failures can influence the correct operation of one of the safety functions.

The complete module classification for the MPC5748G can be found in the attached
"Module classification" spreadsheet.

FMEDA

Safety Manual for MPC5748G, Rev. 3, 08/2017

100 NXP Semiconductors

Chapter 7
Dependent Failures

7.1 Provisions against dependent failures

7.1.1 Causes of dependent failures

ISO 26262-9 lists the following dependent failures, which are applicable to the
MPC5748G on chip level:

• Random hardware failures, for example:
• dependent failures that are able to influence an on-chip function and its

respective safety mechanisms
• Environmental conditions, for example:

• temperature
• EMI

• Failures of common signals (external resources), for example:
• clock
• power-supply
• non-application control signals (for example, testing, debugging)
• signals from modules that are not replicated

Additionally, the following topics are mentioned, which are out of scope of this
document and not treated here:

• Development faults:
• development faults are systematic faults which are addressed by design-process

• Manufacturing faults:
• manufacturing faults are usually systematic faults addressed by design-process

and production test
• Installation and repair faults:

• installation and repair faults need to be considered at system level
• Stress due to specific situations:

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 101

• Specific situations may be considered at system level. Additionally, the result of
stress (for example, wear and aging due to electro-migration) usually lead to
single-point faults and are not considered dependent failures.

7.1.2 Measures against dependent failures

Environmental conditions

7.1.2.1.1 Temperature

The MPC5748G was designed to work within a maximum operational temperature
profile (see the MPC5748G Data Sheet).

7.1.2.1.2 EMI and I/O

To cope with noise on digital inputs, the I/O circuitry provides input hysteresis on all
digital inputs. Moreover, the RESET and NMI inputs contain glitch filtering capabilities,
which are described in sections Hardware requirements on system level and "Glitch
filter".

To reduce interference due to digital outputs, the I/O circuitry provides signal slope
control. An internal weak pull up or pull down structure is also provided to define the
input state.

Failures of common signals

7.1.2.2.1 Clock

To cover dependent failures caused by clock issues, modules for supervision are
implemented which are described in Clock Monitor Unit (CMU). Major failures in the
clock system are also detected by the SWT (Software Watchdog Timer).

7.1.2.2.2 Power supply

To cover dependent failures caused by issues with the power supplies, supervision
modules are implemented (see Power Management Controller (PMC)). Some dependent
failures (for example, loss of power supply) are detected since software will no longer be
able to trigger the external watchdog (see External Watchdog (EXWD)).

7.1.2.1

7.1.2.2

Environmental conditions

Safety Manual for MPC5748G, Rev. 3, 08/2017

102 NXP Semiconductors

7.1.2.2.3 Nonapplication control signals

Modules and signals (for example, for scan, test and debug), which are not safety-related
should never be able to lead to a safety-related failure. This can be ensured by either not
interfering with the safety-related parts of the MPC5748G or by detecting such
interference. For example, there must be assurance that the system is not debugged (or
unintentionally placed in debug mode), or placed in any other special mode different
from normal application execution mode (for example, test mode). In addition, an FCCU
failure indication is generated if:

• A self-test sequence of the STCU is unintentionally executed during normal
operation of the device.

7.1.3 Dependent failure avoidance on system level

It is recommended to not use adjacent input and output signals of peripherals, which are
used redundantly, in order to reduce dependent failures. As internal pad position and
external pin/ball position do not necessarily correspond to each other, the safety system
developer may take the following recommendations into consideration:

• Usage of non-contiguous balls of the package
• Usage of non-contiguous pads of the silicon
• Usage of peripheral modules not sharing the same PBRIDGE
• Non-contiguous routing of these signals on the PCB

Assumption under certain conditions: [SM_142] If the system requires robustness
regarding dependent failures, configurations that place redundant signals on neighboring
pads or pins should be avoided. [end]

Implementation hint: Pad position as well as pin/ball position should be taken into
consideration.

The pin/ball assignment for individual peripherals can be extracted from the MPC5748G
Microcontroller Data Sheet. The following section explains how this can be achieved.

7.1.3.1 I/O pin/ball configuration

Whether two functions on two signals are adjacent to each other can be determined by
looking at the mechanical drawings of the packages (see the MPC5748G Data Sheet)
together with the ball number information of the packages as seen in the MPC5748G
Reference Manuals "System Integration Unit Lite2 (SIUL2)" section and the "Pin
muxing" table.

Chapter 7 Dependent Failures

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 103

The layout of the device balls and the order of die pad signals need to both be taken into
consideration. Adjacency of the package balls is straight forward since it can be seen in
the package layout. It is more difficult to determine adjacency on the die. The Signal
Description chapter in the MPC5748G Reference Manual can be used in assisting to
determine adjacency of signals on the die. To help avoid potential issues, redundant
signals cannot be on adjacent balls or on adjacent die pads. Avoiding adjacency limits
crosstalk, signal drive strength, and other associated issues.

7.1.3.2 Modules sharing PBRIDGE

The safety system developer needs to consider how modules are distributed across the
different PBRIDGEs. Whenever possible the redundant modules should be connected to a
different PBRIDGE.

7.1.3.3 External timeout function

A dependent failure may lead to a state where the MPC5748G is not able to signal an
internal failure via its FCCU_EOUTn signals (error out). With the use of a system level
timeout function (for example, watchdog timer), the likelihood that dependent failures
affect the functional safety of the system can be reduced significantly.

In general, the external watchdog covers dependent failures which are related to:

• General destruction of internal components (for example, due to non-mitigated
overvoltage or a latch-up at redundant input pads). Since these errors do not result in
subtle output variations of the MPC5748G but typically in a complete failure, a
simple watchdog is sufficient.

Additionally, the external watchdog is able to detect failures related to:

• Missing/wrong power
• Missing/wrong clocks
• Errors in mode change (for example, unintentionally entering test or debug mode)

NOTE
All of these are expected to be detected by internal safety
mechanisms (CMUs, LVDs/HVDs, signals to the FCCU), so
the external watchdog serves as a fallback for unexpected
failure effects and dependent failures with wider than expected
effects (for example, disabling an on-chip function and its
respective safety mechanisms at the same time).

Failures of common signals

Safety Manual for MPC5748G, Rev. 3, 08/2017

104 NXP Semiconductors

The external watchdog function is in permanent communication with the CPU of
MPC5748G. As soon as there are no correct communications, the external watchdog
function switches the system to Safe statesystem. Thus, either the MPC5748G or external
watchdog function can transition the system to Safe statesystem. The external watchdog
function is required to be sufficiently independent of the MPC5748G (for example,
regarding clock generation, power supply, and so on).

The external watchdog function does not necessarily need to be a dedicated IC, the
requirements may also be fulfilled by another MCU (already used in the system) which is
capable of detecting a lack of communication (such as via CAN or FlexRay) and moving
the system to Safe statesystem.

7.1.4 βIC considerations

During the development of the MPC5748G, the susceptability of the MCU to dependent
failures is evaluated by ensuring sufficient independence between on-chip functions and
their respective safety mechanisms.

One method to do this for an MCU is to determ the β-factor βIC as defined in annex E of
IEC 61508-2. The βIC is calculated based on a checklist of questions with associated
scoring. The smaller the βIC, the less susceptible the on-chip function and their respective
safety mechanisms are to dependent failures. The final βIC estimate should not exceed
25%. The βIC is calculated multiple times, for each pairing of on-chip function and their
respective safety mechamisms.

The FMEDA includes the βIC calculations and is available upon request.

Chapter 7 Dependent Failures

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 105

Failures of common signals

Safety Manual for MPC5748G, Rev. 3, 08/2017

106 NXP Semiconductors

Chapter 8
Additional Information

8.1 Testing All-X in RAM
As mentioned in section End-to-end ECC (e2eECC), All-0 or All-1 content will be an
uncorrectable error only at some addresses in RAMs where address is included in the
ECC calculation. This section contains a program which provides these adresses and can
thus be used to either determine an address to periorically read or check whether
addresses which are periodically read by an application show this desired behaviour.

8.1.1 Candidate address for testing All-X issue

This section describes a Perl script which can be used for finding a candidate address for
testing All-X in the RAMs. Some examples of usage of the script are provided.

#--- start Perl script ---:
eval 'exec perl -w -S $0 ${1+"$@"}'
 if 0;
use strict;
my $base = hex($ARGV[0]);
my $num_to_find = ($#ARGV > 0) ? $ARGV[1] : 1;
my $all0_found = 0;
my $all1_found = 0;
my $guesses = 0;
my $addr = $base;
my $ecc;
my $bit_count;
printf "RAM base address = 0x%08x\n", $base;
printf " All 0s - Addresses with two bits set in the address ECC contribution:\n";'
while(($guesses < 131072) && ($all0_found < $num_to_find)) {
 $ecc = get_ecc($addr, 0, 0);
 $bit_count = count_ones($ecc);
 if($bit_count == 2) {
 $all0_found++;
 printf " (%d) addr = 0x%08x, addr_ecc = 0x%02x\n", $all0_found, $addr, $ecc;
}
$addr += 8;
$guesses++;
}
printf "\n All 1s - Addresses with two bits cleared in the address ECC contribution:\n";
$addr = $base;
while(($guesses < 131072) && ($all1_found < $num_to_find)) {
 $ecc = get_ecc($addr, 0xffffffff, 0xffffffff);

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 107

 $bit_count = count_zeroes($ecc);
 if($bit_count == 2) {
 $all1_found++;
 printf " (%d) addr = 0x%08x, addr_ecc = 0x%02x\n", $all1_found, $addr, $ecc;
 }
 $addr += 8;
 $guesses++;
}
sub count_ones {
 my $string = sprintf("%08b", shift);
 my $count = 0;
 my $i;
 for($i=0; $i<8; $i++) {
 if(substr($string, $i, 1) eq "1") {
 $count++;
 }
 }
 return($count);
}
sub count_zeroes {
 my $string = sprintf("%08b", shift);
 my $count = 0;
 my $i;
 for($i=0; $i<8; $i++) {
 if(substr($string, $i, 1) eq "0") {
 $count++;
 }
 }
 return($count);
}
sub get_ecc {
my $addr = shift;
my $data_be0 = shift;
my $data_be1 = shift;

my @addrx8;
my @data_bex8;
my @data_lex8;
my $i;
my $j;
my $bit;

for($i=3; $i<32; $i++) {
 $bit = ($addr >> $i) & 1
 $addrx8[$i] = $bit
 $addrx8[$i] |= $bit << 1
 $addrx8[$i] |= $bit << 2
 $addrx8[$i] |= $bit << 3
 $addrx8[$i] |= $bit << 4
 $addrx8[$i] |= $bit << 5
 $addrx8[$i] |= $bit << 6
 $addrx8[$i] |= $bit << 7
}

for($i=0; $i<64; $i++) {
 if($i < 32) {
 $bit = ($data_be1 >> $i) & 1;
} else {
 $bit = ($data_be0 >> ($i-32)) & 1;
}

 $data_bex8[$i] = $bit
 $data_bex8[$i] |= $bit << 1
 $data_bex8[$i] |= $bit << 2
 $data_bex8[$i] |= $bit << 3
 $data_bex8[$i] |= $bit << 4
 $data_bex8[$i] |= $bit << 5
 $data_bex8[$i] |= $bit << 6
 $data_bex8[$i] |= $bit << 7
}

Testing All-X in RAM

Safety Manual for MPC5748G, Rev. 3, 08/2017

108 NXP Semiconductors

for($i=0; $i<8; $i++) {
 for($j=0; $j<8; $j++) {
 $data_lex8[$i*8+$j] = $data_bex8[(7-$i)*8+$j];
 }
}

my $addr_ecc
 = (0x1f & $addrx8[31])
 ^ (0xf4 & $addrx8[30])
 ^ (0x3b & $addrx8[29])
 ^ (0xe3 & $addrx8[28])
 ^ (0x5d & $addrx8[27])
 ^ (0xda & $addrx8[26])
 ^ (0x6e & $addrx8[25])
 ^ (0xb5 & $addrx8[24])
 ^ (0x8f & $addrx8[23])
 ^ (0xd6 & $addrx8[22])
 ^ (0x79 & $addrx8[21])
 ^ (0xba & $addrx8[20])
 ^ (0x9b & $addrx8[19])
 ^ (0xe5 & $addrx8[18])
 ^ (0x57 & $addrx8[17])
 ^ (0xec & $addrx8[16])
 ^ (0xc7 & $addrx8[15])
 ^ (0xae & $addrx8[14])
 ^ (0x67 & $addrx8[13])
 ^ (0x9d & $addrx8[12])
 ^ (0x5b & $addrx8[11])
 ^ (0xe6 & $addrx8[10])
 ^ (0x3e & $addrx8[9])
 ^ (0xf1 & $addrx8[8])
 ^ (0xdc & $addrx8[7])
 ^ (0xe9 & $addrx8[6])
 ^ (0x3d & $addrx8[5])
 ^ (0xf2 & $addrx8[4])
 ^ (0x2f & $addrx8[3])

my $addr_ecc_tcm
 = (0x1f & $addrx8[31])
 ^ (0xf4 & $addrx8[30])
 ^ (0x3b & $addrx8[29])
 ^ (0xe3 & $addrx8[28])
 ^ (0x5d & $addrx8[27])
 ^ (0xda & $addrx8[26])
 ^ (0x6e & $addrx8[25])
 ^ (0xb5 & $addrx8[24])
 ^ (0x8f & $addrx8[23])
 ^ (0xd6 & $addrx8[22])
 ^ (0x79 & $addrx8[21])
 ^ (0xba & $addrx8[20])
 ^ (0x9b & $addrx8[19])
 ^ (0xe5 & $addrx8[18])
 ^ (0x57 & $addrx8[17])
 ^ (0xec & $addrx8[16])

my $ecc_tcm_fix
 = (0xc7 & $addrx8[15])
 ^ (0xae & $addrx8[14])
 ^ (0x67 & $addrx8[13])
 ^ (0x9d & $addrx8[12])
 ^ (0x5b & $addrx8[11])
 ^ (0xe6 & $addrx8[10])
 ^ (0x3e & $addrx8[9])
 ^ (0xf1 & $addrx8[8])
 ^ (0xdc & $addrx8[7])
 ^ (0xe9 & $addrx8[6])
 ^ (0x3d & $addrx8[5])

Chapter 8 Additional Information

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 109

 ^ (0xf2 & $addrx8[4])
 ^ (0x2f & $addrx8[3])
my $data_ecc
 = (0xb0 & $data_lex8[63])
 ^ (0x23 & $data_lex8[62])
 ^ (0x70 & $data_lex8[61])
 ^ (0x62 & $data_lex8[60])
 ^ (0x85 & $data_lex8[59])
 ^ (0x13 & $data_lex8[58])
 ^ (0x45 & $data_lex8[57])
 ^ (0x52 & $data_lex8[56])

 ^ (0x2a & $data_lex8[55])
 ^ (0x8a & $data_lex8[54])
 ^ (0x0b & $data_lex8[53])
 ^ (0x0e & $data_lex8[52])
 ^ (0xf8 & $data_lex8[51])
 ^ (0x25 & $data_lex8[50])
 ^ (0xd9 & $data_lex8[49])
 ^ (0xa1 & $data_lex8[48])

 ^ (0x54 & $data_lex8[47])
 ^ (0xa7 & $data_lex8[46])
 ^ (0xa8 & $data_lex8[45])
 ^ (0x92 & $data_lex8[44])
 ^ (0xc8 & $data_lex8[43])
 ^ (0x07 & $data_lex8[42])
 ^ (0x34 & $data_lex8[41])
 ^ (0x32 & $data_lex8[40])

 ^ (0x68 & $data_lex8[39])
 ^ (0x89 & $data_lex8[38])
 ^ (0x98 & $data_lex8[37])
 ^ (0x49 & $data_lex8[36])
 ^ (0x61 & $data_lex8[35])
 ^ (0x86 & $data_lex8[34])
 ^ (0x91 & $data_lex8[33])
 ^ (0x46 & $data_lex8[32])

 ^ (0x58 & $data_lex8[31])
 ^ (0x4f & $data_lex8[30])
 ^ (0x38 & $data_lex8[29])
 ^ (0x75 & $data_lex8[28])
 ^ (0xc4 & $data_lex8[27])
 ^ (0x0d & $data_lex8[26])
 ^ (0xa4 & $data_lex8[25])
 ^ (0x37 & $data_lex8[24])

 ^ (0x64 & $data_lex8[23])
 ^ (0x16 & $data_lex8[22])
 ^ (0x94 & $data_lex8[21])
 ^ (0x29 & $data_lex8[20])
 ^ (0xea & $data_lex8[19])
 ^ (0x26 & $data_lex8[18])
 ^ (0x1a & $data_lex8[17])
 ^ (0x19 & $data_lex8[16])

 ^ (0xd0 & $data_lex8[15])
 ^ (0xc2 & $data_lex8[14])
 ^ (0x2c & $data_lex8[13])
 ^ (0x51 & $data_lex8[12])
 ^ (0xe0 & $data_lex8[11])
 ^ (0xa2 & $data_lex8[10])
 ^ (0x1c & $data_lex8[9])
 ^ (0x31 & $data_lex8[8])

 ^ (0x8c & $data_lex8[7])
 ^ (0x4a & $data_lex8[6])
 ^ (0x4c & $data_lex8[5])

Testing All-X in RAM

Safety Manual for MPC5748G, Rev. 3, 08/2017

110 NXP Semiconductors

 ^ (0x15 & $data_lex8[4])
 ^ (0x83 & $data_lex8[3])
 ^ (0x9e & $data_lex8[2])
 ^ (0x43 & $data_lex8[1])
 ^ (0xc1 & $data_lex8[0])

 my $ecc = $data_ecc ^ $addr_ecc;
 my $ecc_tcm = $data_ecc ^ $addr_ecc ^ $addr_ecc_tcm ^ 0x55;
 my $ecc_flash = $data_ecc ^ 0xff;
 return($ecc);
}
##printf "addr = 0x%08x\n", $addr;
##printf "data_be = 0x%08x_%08x\n", $data_be0, $data_be1;
##printf "addr_ecc = 0x%02x\n", $addr_ecc;
##printf "data_ecc = 0x%02x\n", $data_ecc;
##printf "ecc = 0x%02x\n", $ecc;
##printf "ecc_tcm = 0x%02x\n", $ecc_tcm;
##printf "ecc_tcm_fix = 0x%02x\n", $ecc_tcm_fix;
##printf "ecc_flash = 0x%02x\n", $ecc_flash;
#----- end perl script -----

This script finds the first N addresses with 2 or 6 bits set and 2 or 6 bits cleared in the
address ECC contribution. Usage is as follows:

• find_allx_addr address [number]
• address – starting address to start searching from
• number – number of addresses to find, default is 1

Example:

1. Find the first address of each type for system RAM:
• ./find_allx_addr 40000000

RAM base address = 40000000h

All 0s - Addresses with two bits set in the address ECC contribution:

• addr = 40000010h, addr_ecc = 06h

All 1s - Addresses with two bits cleared in the address ECC contribution:

1. addr = 40000008h, addr_ecc = DBh

2. Find the first 5 addresses of each type for system RAM:
• ./find_allx_addr 40000000 5

RAM base address = 40000000h

All 0s - Addresses with two bits set in the address ECC contribution:

1. addr = 40000010h, addr_ecc = 06h

2. addr = 40000038h, addr_ecc = 14h

3. addr = 40000058h, addr_ecc = C0h

4. addr = 40000080h, addr_ecc = 28h

5. addr = 400000f8h, addr_ecc = 21h

Chapter 8 Additional Information

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 111

All 1s - Addresses with two bits cleared in the address ECC contribution:

1. addr = 40000008h, addr_ecc = DBh

2. addr = 40000098h, addr_ecc = F5h

3. addr = 400000b0h, addr_ecc = E7h

4. addr = 400000c8h, addr_ecc = EEh

5. addr = 400000e0h, addr_ecc = FCh

8.1.2 ECC checkbit/syndrome coding scheme

The e2eECC scheme implements a single-error correction, double-error detection
(SECDED) code using the so-called Hsiao odd-weight column criteria. These codes are
named for M.Y. Hsiao, an IBM researcher who published extensively in the early 1970s
on SECDED codes better suited for implementation in protecting (mainframe) computer
memories than traditional Hamming codes.

The Hsiao codes are Hamming distance 4 implementations which provide the SECDED
capabilities. The minimum odd-weight constraints defined by Hsiao are relatively simple
in the resulting implementation of the parity check H matrix which defines the
association between the data (and address) bits and the checkbits. They are:

1. There are no all zeroes columns.

2. Every column is distinct.

3. Every column contains an odd number of ones, and hence is "odd weight".

In defining the H-matrix for this family of devices, these requirements from Hsiao were
applied. Additionally, there are a variety of ECC code-word requirements associated with
specific functional requirements associated with the flash memory that further dictated
the specific column definitions. In any case, the resulting ECC is organized based on 64
data bits plus 29 address bits (the upper bits of the 32-bit address field minus the 3 bits
which select the byte within 64-bit (8-byte) data field.

The basic H-matrix for this (101, 93) code (93 is the total number of "data" bits, 101 is
the total number of data bits (93) plus 8 checkbits) is shown in the table below. A '*' in
the table below indicates the corresponding data or address bit is XOR'd to form the final
checkbit value on the left. For 64-bit data writes, the table sections corresponding to
D[63:32], D[31:0], and A[31:3] are logically summed (output of each table section is
XOR'ed) together to the final value driven on the hwchkbit[7:0] outputs. Note that this
table uses the AHB bit numbering convention where bit[0] is the least significant bit.

Testing All-X in RAM

Safety Manual for MPC5748G, Rev. 3, 08/2017

112 NXP Semiconductors

Table 8-1. e2eECC basic H-matrix definition

Checkbits [7:0]

Data Bit1

Byte 7 Byte 6 Byte 5 Byte 4

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

7 * * * * * * * * * * * * * *

6 * * * * * * * * * * * *

5 * * * * * * * * * * * * * *

4 * * * * * * * * * * * *

3 * * * * * * * * * * * *

2 * * * * * * * * * *

1 * * * * * * * * * * * * * *

0 * * * * * * * * * * * * * *

Byte 3 Byte 2 Byte 1 Byte 0

Checkbits [7:0] 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

7 * * * * * * * * * * * *

6 * * * * * * * * * * * * * *

5 * * * * * * * * * * * *

4 * * * * * * * * * * * * * *

3 * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * * * *

1 * * * * * * * * * * * *

0 * * * * * * * * * * * *

Checkbits [7:0]
Address Bit1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3

7 * * * * * * * * * * * * * * * * * *

6 * * * * * * * * * * * * * * * * * *

5 * * * * * * * * * * * * * * * * * *

4 * * * * * * * * * * * * * * * * * *

3 * * * * * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * * * * * * *

1 * * * * * * * * * * * * * * * * * *

0 * * * * * * * * * * * * * * * * * *

1. Bit numbering is AHB convention, bit 0 is LSB. D[7:0] corresponds to byte at address 0. D[63:56] corresponds to byte at
address 7.

Figure 8-1 shows an alternative representation of the ECC encode process, written as a C
language function.

Figure 8-1. C Language encode ECC function description

encodeEcc (addr, data_a2_is_zero, data_a2_is_one)
 unsigned int addr; /* 32-bit byte address */

Chapter 8 Additional Information

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 113

 unsigned int data_a2_is_zero; /* 32-bit data lower, a[2]=0 */
 unsigned int data_a2_is_one; /* 32-bit data upper, a[2]=1 */

{
 unsigned int addr_ecc; /* 8 bits of ecc for address */
 unsigned int ecc; /* 8 bits of ecc codeword */

/* the following equation calculates the 8-bit wide ecc codeword by examining each addr or
data bits and xor'ing the appropriate H-matrix value if the bit = 1 */

 addr_ecc
 = (((addr >> 31) & 1) ? 0x1f : 0x0) /* addr[31] */
 ^ (((addr >> 30) & 1) ? 0xf4 : 0x0) /* addr[30] */
 ^ (((addr >> 29) & 1) ? 0x3b : 0x0) /* addr[29] */
 ^ (((addr >> 28) & 1) ? 0xe3 : 0x0) /* addr[28] */
 ^ (((addr >> 27) & 1) ? 0x5d : 0x0) /* addr[27] */
 ^ (((addr >> 26) & 1) ? 0xda : 0x0) /* addr[26] */
 ^ (((addr >> 25) & 1) ? 0x6e : 0x0) /* addr[25] */
 ^ (((addr >> 24) & 1) ? 0xb5 : 0x0) /* addr[24] */

 ^ (((addr >> 23) & 1) ? 0x8f : 0x0) /* addr[23] */
 ^ (((addr >> 22) & 1) ? 0xd6 : 0x0) /* addr[22] */
 ^ (((addr >> 21) & 1) ? 0x79 : 0x0) /* addr[21] */
 ^ (((addr >> 20) & 1) ? 0xba : 0x0) /* addr[20] */
 ^ (((addr >> 19) & 1) ? 0x9b : 0x0) /* addr[19] */
 ^ (((addr >> 18) & 1) ? 0xe5 : 0x0) /* addr[18] */
 ^ (((addr >> 17) & 1) ? 0x57 : 0x0) /* addr[17] */
 ^ (((addr >> 16) & 1) ? 0xec : 0x0) /* addr[16] */

 ^ (((addr >> 15) & 1) ? 0xc7 : 0x0) /* addr[15] */
 ^ (((addr >> 14) & 1) ? 0xae : 0x0) /* addr[14] */
 ^ (((addr >> 13) & 1) ? 0x67 : 0x0) /* addr[13] */
 ^ (((addr >> 12) & 1) ? 0x9d : 0x0) /* addr[12] */
 ^ (((addr >> 11) & 1) ? 0x5b : 0x0) /* addr[11] */
 ^ (((addr >> 10) & 1) ? 0xe6 : 0x0) /* addr[10] */
 ^ (((addr >> 9) & 1) ? 0x3e : 0x0) /* addr[9] */
 ^ (((addr >> 8) & 1) ? 0xf1 : 0x0) /* addr[8] */

 ^ (((addr >> 7) & 1) ? 0xdc : 0x0) /* addr[7] */
 ^ (((addr >> 6) & 1) ? 0xe9 : 0x0) /* addr[6] */
 ^ (((addr >> 5) & 1) ? 0x3d : 0x0) /* addr[5] */
 ^ (((addr >> 4) & 1) ? 0xf2 : 0x0) /* addr[4] */
 ^ (((addr >> 3) & 1) ? 0x2f : 0x0); /* addr[3] */

 ecc = (((data_a2_is_zero >> 31) & 1) ? 0xb0 : 0x0) /* data[63] */
 ^ (((data_a2_is_zero >> 30) & 1) ? 0x23 : 0x0) /* data[62] */
 ^ (((data_a2_is_zero >> 29) & 1) ? 0x70 : 0x0) /* data[61] */
 ^ (((data_a2_is_zero >> 28) & 1) ? 0x62 : 0x0) /* data[60] */
 ^ (((data_a2_is_zero >> 27) & 1) ? 0x85 : 0x0) /* data[59] */
 ^ (((data_a2_is_zero >> 26) & 1) ? 0x13 : 0x0) /* data[58] */
 ^ (((data_a2_is_zero >> 25) & 1) ? 0x45 : 0x0) /* data[57] */
 ^ (((data_a2_is_zero >> 24) & 1) ? 0x52 : 0x0) /* data[56] */

 ^ (((data_a2_is_zero >> 23) & 1) ? 0x2a : 0x0) /* data[55] */
 ^ (((data_a2_is_zero >> 22) & 1) ? 0x8a : 0x0) /* data[54] */
 ^ (((data_a2_is_zero >> 21) & 1) ? 0x0b : 0x0) /* data[53] */
 ^ (((data_a2_is_zero >> 20) & 1) ? 0x0e : 0x0) /* data[52] */
 ^ (((data_a2_is_zero >> 19) & 1) ? 0xf8 : 0x0) /* data[51] */
 ^ (((data_a2_is_zero >> 18) & 1) ? 0x25 : 0x0) /* data[50] */
 ^ (((data_a2_is_zero >> 17) & 1) ? 0xd9 : 0x0) /* data[49] */
 ^ (((data_a2_is_zero >> 16) & 1) ? 0xa1 : 0x0) /* data[48] */

 ^ (((data_a2_is_zero >> 15) & 1) ? 0x54 : 0x0) /* data[47] */
 ^ (((data_a2_is_zero >> 14) & 1) ? 0xa7 : 0x0) /* data[46] */
 ^ (((data_a2_is_zero >> 13) & 1) ? 0xa8 : 0x0) /* data[45] */
 ^ (((data_a2_is_zero >> 12) & 1) ? 0x92 : 0x0) /* data[44] */
 ^ (((data_a2_is_zero >> 11) & 1) ? 0xc8 : 0x0) /* data[43] */
 ^ (((data_a2_is_zero >> 10) & 1) ? 0x07 : 0x0) /* data[42] */
 ^ (((data_a2_is_zero >> 9) & 1) ? 0x34 : 0x0) /* data[41] */
 ^ (((data_a2_is_zero >> 8) & 1) ? 0x32 : 0x0) /* data[40] */

Testing All-X in RAM

Safety Manual for MPC5748G, Rev. 3, 08/2017

114 NXP Semiconductors

 ^ (((data_a2_is_zero >> 7) & 1) ? 0x68 : 0x0) /* data[39] */
 ^ (((data_a2_is_zero >> 6) & 1) ? 0x89 : 0x0) /* data[38] */
 ^ (((data_a2_is_zero >> 5) & 1) ? 0x98 : 0x0) /* data[37] */
 ^ (((data_a2_is_zero >> 4) & 1) ? 0x49 : 0x0) /* data[36] */
 ^ (((data_a2_is_zero >> 3) & 1) ? 0x61 : 0x0) /* data[35] */
 ^ (((data_a2_is_zero >> 2) & 1) ? 0x86 : 0x0) /* data[34] */
 ^ (((data_a2_is_zero >> 1) & 1) ? 0x91 : 0x0) /* data[33] */
 ^ ((data_a2_is_zero & 1) ? 0x46 : 0x0) /* data[32] */

 ^ (((data_a2_is_one >> 31) & 1) ? 0x58 : 0x0) /* data[31] */
 ^ (((data_a2_is_one >> 30) & 1) ? 0x4f : 0x0) /* data[30] */
 ^ (((data_a2_is_one >> 29) & 1) ? 0x38 : 0x0) /* data[29] */
 ^ (((data_a2_is_one >> 28) & 1) ? 0x75 : 0x0) /* data[28] */
 ^ (((data_a2_is_one >> 27) & 1) ? 0xc4 : 0x0) /* data[27] */
 ^ (((data_a2_is_one >> 26) & 1) ? 0x0d : 0x0) /* data[26] */
 ^ (((data_a2_is_one >> 25) & 1) ? 0xa4 : 0x0) /* data[25] */
 ^ (((data_a2_is_one >> 24) & 1) ? 0x37 : 0x0) /* data[24] */

 ^ (((data_a2_is_one >> 23) & 1) ? 0x64 : 0x0) /* data[23] */
 ^ (((data_a2_is_one >> 22) & 1) ? 0x16 : 0x0) /* data[22] */
 ^ (((data_a2_is_one >> 21) & 1) ? 0x94 : 0x0) /* data[21] */
 ^ (((data_a2_is_one >> 20) & 1) ? 0x29 : 0x0) /* data[20] */
 ^ (((data_a2_is_one >> 19) & 1) ? 0xea : 0x0) /* data[19] */
 ^ (((data_a2_is_one >> 18) & 1) ? 0x26 : 0x0) /* data[18] */
 ^ (((data_a2_is_one >> 17) & 1) ? 0x1a : 0x0) /* data[17] */
 ^ (((data_a2_is_one >> 16) & 1) ? 0x19 : 0x0) /* data[16] */

 ^ (((data_a2_is_one >> 15) & 1) ? 0xd0 : 0x0) /* data[15] */
 ^ (((data_a2_is_one >> 14) & 1) ? 0xc2 : 0x0) /* data[14] */
 ^ (((data_a2_is_one >> 13) & 1) ? 0x2c : 0x0) /* data[13] */
 ^ (((data_a2_is_one >> 12) & 1) ? 0x51 : 0x0) /* data[12] */
 ^ (((data_a2_is_one >> 11) & 1) ? 0xe0 : 0x0) /* data[11] */
 ^ (((data_a2_is_one >> 10) & 1) ? 0xa2 : 0x0) /* data[10] */
 ^ (((data_a2_is_one >> 9) & 1) ? 0x1c : 0x0) /* data[9] */
 ^ (((data_a2_is_one >> 8) & 1) ? 0x31 : 0x0) /* data[8] */

 ^ (((data_a2_is_one >> 7) & 1) ? 0x8c : 0x0) /* data[7] */
 ^ (((data_a2_is_one >> 6) & 1) ? 0x4a : 0x0) /* data[6] */
 ^ (((data_a2_is_one >> 5) & 1) ? 0x4c : 0x0) /* data[5] */
 ^ (((data_a2_is_one >> 4) & 1) ? 0x15 : 0x0) /* data[4] */
 ^ (((data_a2_is_one >> 3) & 1) ? 0x83 : 0x0) /* data[3] */
 ^ (((data_a2_is_one >> 2) & 1) ? 0x9e : 0x0) /* data[2] */
 ^ (((data_a2_is_one >> 1) & 1) ? 0x43 : 0x0) /* data[1] */
 ^ ((data_a2_is_one & 1) ? 0xc1 : 0x0); /* data[0] */

 ecc = ecc ^ addr_ecc; /* combine data and addr ecc values */

 return(ecc);
}

On a memory read operation, the e2eECC logic performs the same type of optional
adjustment on the read checkbits.

As the ECC syndrome is calculated on a read operation by applying the H-matrix to the
data plus the checkbits, an all zero syndrome indicates an error free operation. If the
generated syndrome value is non-zero and matches one of the H-matrix values associated
with the data or checkbits, it represents a single-bit error correction case and the specific
bit is complemented to produce the correct data value. If the syndrome value matches one
of the H-matrix values associated with the address bits, or is an even weight value, or
represents an unused odd weight value, a non-correctable ECC event has been detected
and the appropriate error termination response is initiated.

Chapter 8 Additional Information

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 115

Testing All-X in RAM

Safety Manual for MPC5748G, Rev. 3, 08/2017

116 NXP Semiconductors

Chapter 9
Acronyms and Abbreviations

9.1 Acronyms and abbreviations
A short list of acronyms and abbreviations used in this document is shown in the table
below.

Table 9-1. Acronyms and abbreviations

Terms Meanings

BCTU Body Cross-Triggering Unit

CCF Common Cause Failures

CMF Common Mode Failures

DC Diagnostic Coverage

DED Double-Error Detection

DPF Dual-Point Fault

ECC Error Correction Code

EDC Error Detection Code

FMEDA Failure Modes, Effects & Diagnostic Analysis

LF Latent Fault

LFM Latent Fault Metric

MCU Microcontroller Unit

MEMU Memory Error Management Module

MPF Multiple-Point Fault

PMHF Probabilistic Metric for random Hardware Failures

PST Process Safety Time

RF Residual Fault

SEooC Safety Element out of Context

SEC Single-Error Correction

SF Safe Fault

SFF Safe Failure Fraction

SIL Safety Integrity Level

SM Safety Manual

Table continues on the next page...

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 117

Table 9-1. Acronyms and abbreviations (continued)

Terms Meanings

SPF Single-Point Fault

SPFM Single-Point Faults Metric

TED Triple-Error Detection

Acronyms and abbreviations

Safety Manual for MPC5748G, Rev. 3, 08/2017

118 NXP Semiconductors

Appendix A
Release Notes for Revision 3

A.1 General changes

• Editorial changes and improvements throughout this document.
• Updated the attached "Module classification" spreadsheet (release notes are contained within the attachment).
• Changed the name of the module classification spreadsheet attachment to "Module Classification".

A.2 Preface changes

• In Functional safety standards, changed "ISO 26262-10 Annex A ISO 26262 and microcontrollers" to "ISO
26262-10:2011-2012 Annex A ISO 26262 and microcontrollers".

• In Other considerations, changed "The safety system developer" to "The functional safety manager for the developed
and deployed system".

A.3 MCU Safety Context changes

• Cleaned up Figure 2-1.
• In the Faults and failures section:

• Modified the hierarchy of this section - no content changes.

• In the MCU fault indication time section:
• Removed the list of mechanisms from the "Recognition time" bullet.

A.4 MCU Safety Concept changes

• In Figure 3-1 :
• Added a note: "All FlexCANs optionally support CAN FD'.

• In External error indication :
• Added the following note to the end of the section: "EOUT does not indicate the fault condition if the MCU is in

RESET. When the MCU is in RESET and the IO is high-z, the system safe state should be assured using pull-
up/down resistors to pull EOUT to its fault indication level."

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 119

• In ECC :
• In the introductory paragraph "Error correcting codes are used for end-to-end protection...", changed "cores" to

"bus masters" and "RAMs" to "RAMs and PBRIDGES a and b".
• In End-to-End protection on data path :

• Updated Figure 3-2.
• Replaced the ECC for storage section.
• In Communication controllers :

• Added Ethernet, MediaLB, uSDHC, and USBOTG to the list of communication controllers that do not contain
special safety mechanisms.

• In Disabling of communication controllers :
• Added a note at the end of this section: "The FCCU uses internal signals to disable..."

• Replaced the BIST during boot section.
• Added the LBISTed modules section.
• In External error indication :

• Added the note "FCCU EOUT0 and EOUT1 are muxed on the pad, and their controls will be via SIUL. There will
be no interaction with the HSM for this control."

• Changed "FCCU_STAT[PhysicErrorPin]" to "FCCU_STAT".
• In Fault inputs :

• Changed the referenced chapter from "Chip Configuration" to "Fault Collection and Control Unit (FCCU)".
• In Operational interference protection :

• Added the following sentence at the end of this section: "These safety mechanisms are further described in the
SMPU chapter of the MPC5748G Reference Manual."

• Added the Common cause failure measures section.
• In FCCU and failure monitoring :

• Removed the "FCCU supervision (FOSU)" subsection.

• In the Built-In Self Tests (BIST) section:
• Removed the subsection "Online Logical BIST (LBIST)".

• In the BIST during boot section:
• Added the following paragraph at the end of the section: "A destructive reset should be triggered at least once

per L-FTTI (for example, once per drive cycle) to ensure an offline LBIST is performed. In some applications, the
MPC5748G may not be reset within the L-FTTI but may instead enter Low Power mode within the L-FTTI. In this
case, a destructive reset can be triggered upon exit from Low Power mode, triggering an offline LBIST."

A.5 Hardware Requirements changes

• In the Error Out Monitor (ERRM) section:
• Changed "FCCU_EOUT0, and optionally FCCU_EOUT1" to "FCCU_EOUT0 and/or FCCU_EOUT1".

• In the Power Supply Monitor (PSM) section:
• In Assumption SM_087, removed the phrase "where no supervision is provided on the MCU".

• In the Single FCCU signal connected to separate device using voltage domain coding section:
• Changed "SM_170" to "SM_170a".

A.6 Software Requirements changes

• In the EEPROM section:
• Corrected the first paragraph to show that ECC events detected on accesses to EEPROM, single-bit errors, and

multi-bit errors are all reported to the MEMU.

• In the Test mode section:
• Added the following sentence at the end of the section: "FIRC clock-related test mode activation is intended to

be covered by the frequency meter function of CMU_0, as described in the FIRC Runtime checks section."

Hardware Requirements changes

Safety Manual for MPC5748G, Rev. 3, 08/2017

120 NXP Semiconductors

• In the CRC Runtime checks section:
• Changed "SM_170" to "SM_170b".

• In the Built-in Hardware Self-Tests (BIST) section:
• Changed the following sentences to be Assumption SM_209: "Software shall check after MBIST execution

whether two reported single bit errors belong to the same address and thus constitute a multi-bit error. MBIST
does not guarantee detection of all multi-bit errors on its own."

• Removed the following paragraph at the end of the section: "If additional coverage of the ECC error reaction path
is requested, SW shall program two patterns into RAM..."

• In the STM Runtime checks section:
• Removed Assumption SM_310.
• Added the Implementation hint.

• In the 5 V supply supervision section:
• Added this new section.

• In the Fast Internal RC Oscillator (FIRC) section:
• Added a sentence stating that the FIRC should not be used as the input of the PLL for the system clock.

• In the Built-in Hardware Self-Tests (BIST) section:
• Removed the statement that the STCU2 will execute automatically "when initiated by software (online)".
• Removed STCU_LBSSW and STCU_LBESW checks of LBIST results.
• Removed STCU_MBSLSW, STCU_MBSMSW, STCU_MBSHSW, STCU_MBELSW, STCU_MBEMSW, and

STCU_MBEHSW checks of MBIST results.
• In the Memory Built-In Self-Test (MBIST) section:

• Removed the statement that the SRAM BIST (MBIST) "can be run during shutdown, if configured appropriately
and triggered by software".

• Removed the reference to the STCU2 section.
• In the Logic Built-In Self-Test (LBIST) section:

• Removed the statement that the Logic Built-In Self-Test (LBIST) "can be triggered by software run during
shutdown if configured appropriately".

• Removed the reference to the STCU2 section.
• Removed the note "In principle, the LBIST can be run at any time, but a reset will be generated by the MCU after

the LBIST completes."
• Added the note "A destructive reset should be triggered at least once per L-FTTI (for example, once per drive

cycle) to ensure LBIST is performed."

A.7 Failure Rates and FMEDA changes

• In the Module classification section:
• Changed the name of the module classification spreadsheet to "Module Classification".

A.8 Dependent Failures changes

• No substantial content changes

A.9 Additional Information changes

• In the ECC checkbit/syndrome coding scheme section:

Appendix A Release Notes for Revision 3

Safety Manual for MPC5748G, Rev. 3, 08/2017

NXP Semiconductors 121

• Added the following footnote to the "Data Bit" heading (applies to both the "Data Bit" and "Address Bit" headings)
in Table 8-1 : "Bit numbering is AHB convention, bit 0 is LSB. D[7:0] corresponds to byte at address 0. D[63:56]
corresponds to byte at address 7."

A.10 Acronyms and Abbreviations changes

• No substantial content changes

Acronyms and Abbreviations changes

Safety Manual for MPC5748G, Rev. 3, 08/2017

122 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customerʼs technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER

WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE

PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,

MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,

CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,

Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,

StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. ARM, AMBA, ARM Powered,

Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2014–2017 NXP B.V.

Document Number MPC5748GSM
Revision 3, 08/2017

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Chapter 1​: Preface
	Overview
	Safety manual assumptions
	Safety manual guidelines
	Functional safety standards
	Related documentation
	Other considerations

	Chapter 2​: MCU Safety Context
	Target Applications
	Safety integrity level
	Safety function
	MCU safety functions
	Correct operation

	Safe states
	MCU Safe state
	Transitions to 			Safe statesystem
	Continuous reset transitions

	Faults and failures
	Failure types
	Faults
	Dependent failures

	Single-point fault tolerant time interval and process safety 			time
	MCU fault indication time

	Latent-fault tolerant time interval for latent faults
	MCU fault indication time

	MCU failure indication
	Failure handling
	Failure indication signaling

	Chapter 3​: MCU Safety Concept
	General concept
	Use of cores for safety - self-test, reciprocal comparison, temporal redundancy
	ECC
	End-to-End protection on data path
	ECC for storage
	All-X words and ECC
	ECC failure handling

	Clock and power monitoring
	Clock
	Power

	I/O peripherals
	Communication controllers
	Disabling of communication controllers

	Built-In Self Tests (BIST)
	BIST during boot
	LBISTed modules

	FCCU and failure monitoring
	External error indication
	Failure handling
	Fault inputs

	Memory Error Management Unit (MEMU)
	Interface to ECC units

	Operational interference protection
	Common cause failure measures

	Chapter 4​: Hardware Requirements
	Hardware requirements on system level
	Assumed functions by separate circuitry
	High impedance outputs
	External Watchdog (EXWD)
	Power Supply Monitor (PSM)
	Error Out Monitor (ERRM)
	Both FCCU signals connected to separate device
	Single FCCU signal connected to separate device
	Single FCCU signal connected to separate device using voltage domain coding
	Single FCCU signal connected to separate device using time domain coding

	Optional hardware measures on system level
	External communication
	PWM output monitor

	Chapter 5​: Software Requirements
	Software requirements on system level
	Disabled modes of operation
	Debug mode
	Test mode

	MPC5748G modules
	Cores
	Runtime checks
	Reciprocal comparison
	Software based self-test
	Temporal redundancy

	Fault Collection and Control Unit (FCCU)
	Initial checks and configurations
	Runtime checks

	Reset Generation Module (MC_RGM)
	Initial checks and configurations
	Consecutive resets

	Self Test Control Unit (STCU2)
	Initial checks and configurations

	Software Watchdog Timer
	Run-time checks

	Cyclic Redundancy Checker Unit
	Runtime checks
	Implementation details
	<module>_SWTEST_REGCRC

	Slow Internal RC Oscillator
	Fast Internal RC Oscillator (FIRC)
	Initial checks and configurations
	Runtime checks

	Fast External Oscillator (FXOSC)
	Initial checks and configurations
	Runtime checks

	PLL Digital Interface (PLLDIG)
	Initial checks and configurations

	Clock Monitor Unit (CMU)
	Initial checks and configurations

	Mode Entry (MC_ME)
	Power Management Controller (PMC)
	1.25 V supply supervision
	3.3 V supply supervision
	5 V supply supervision

	Memory Protection Units
	System Memory Protection Unit (SMPU)
	Initial checks and configurations

	Peripheral Bridge (PBRIDGE) protection
	Initial checks and configurations

	Built-in Hardware Self-Tests (BIST)
	Memory Built-In Self-Test (MBIST)
	Logic Built-In Self-Test (LBIST)
	Flash memory array integrity self check
	Flash memory ECC logic check
	Flash memory ECC fault report check

	End-to-end ECC (e2eECC)
	Interrupt Controller (INTC)
	Periodic low latency IRQs
	Non-Periodic low latency IRQs
	Runtime checks

	Enhanced Direct Memory Access (eDMA)
	Runtime checks
	eDMA transfers

	System timer module
	Runtime checks

	Periodic interrupt timer
	Runtime checks

	System Status and Configuration Module
	Initial checks and configurations

	Memory Error Management Unit (MEMU)
	Flash memory
	EEPROM
	Initial checks and configurations
	Runtime checks

	Body Cross Triggering Unit (BCTU)
	Runtime checks
	Synchronize sequentially read inputs
	Example: BCTU ADC conversion data overrun test
	Example: BCTU ADC channel cross-check
	Example: BCTU timer command cross-check

	Error reporting path tests
	Glitch filter
	Register Protection module (REG_PROT)
	Runtime checks

	Wake-Up Unit (WKPU) / External NMI
	Crossbar Switch (AXBS)
	Runtime checks

	System Integration Unit Lite2 (SIUL2)
	Digital inputs
	Hardware

	Analog-to-Digital Converter (ADC)
	Initial checks and configurations

	Communications
	Redundant communication
	Fault-tolerant communication protocol

	Additional configuration information
	Stack
	Initial checks and configurations

	MPC5748G configuration

	Chapter 6​: Failure Rates and FMEDA
	Failure rates
	FMEDA
	Module classification

	Chapter 7​: Dependent Failures
	Provisions against dependent failures
	Causes of dependent failures
	Measures against dependent failures
	Dependent failure avoidance on system level
	I/O pin/ball configuration
	Modules sharing PBRIDGE
	External timeout function

	βIC considerations

	Chapter 8​: Additional Information
	Testing All-X in RAM
	Candidate address for testing All-X issue
	ECC checkbit/syndrome coding scheme

	Chapter 9​: Acronyms and Abbreviations
	Acronyms and abbreviations

	Appendix A: Release Notes for Revision 3
	General changes
	Preface changes
	MCU Safety Context changes
	MCU Safety Concept changes
	Hardware Requirements changes
	Software Requirements changes
	Failure Rates and FMEDA changes
	Dependent Failures changes
	Additional Information changes
	Acronyms and Abbreviations changes

Sheet1

		

				Elements in ISO 26262-5, Table D.1		MPC5748G FMEDA		MPC5748G Module		Part of Software Execution Function		Safety Mechanism		Comments

				Power Supply		Power		Power Management Controller (PMC)		YES

								Power Control Unit (MC_PCU)		YES

				Clock		Clock		Phase Lock Loop (PLL_DIG0/PLL_ANA0)		YES

								Clock Monitor Unit (CMU0)				YES

								Clock Generation Module (MC_CGM)		YES

								Fast External Oscillator (OSC_DIG_8_40M/OSC_ANA_8_40M)		YES

								Slow External Oscillator (OSC_DIG_32K/OSC_ANA_32K)						Not Safety Related module - Low Power operation only

								Fast Internal RC Oscillator (RCOSC_DIG_16M/RCOSC_ANA_16M)		YES

								Slow Internal RC Oscillator (RCOSC_DIG_128K/RCOSC_ANA_128K)		YES

								Real Time Clock (RTC)

				Non-Volatile Memory		Flash		Embedded Flash Memory (FLASH0)		YES

								Flash Memory Controller (FLASH_CTL)		YES

								End-to-end Error Correction Code (e2eECC)				YES

				Volatile Memory		SRAM		System SRAM (SRAM ARRAY1/2/3)		YES

								RAM Controller (PRAM_CTL, DMC_PRAM)		YES

								End-to-end Error Correction Code (e2eECC)				YES

				Processing Unit		Core		Main Core_0 (e200z420)		YES

								Main Core_1 (e200z420)		YES

								Peripheral Core_2 (e200z210)				YES

								Crossbar Switch (XBAR0/XBAR1)		YES

								System Memory Protection Unit (SMPU)		YES

								Decorated Storage Memory Controller (5 x DSMC)		YES				Part of SRAM controller in FMEDA

								Interrupt Controller (INTC)		YES

								Direct Memory Access Controller (DMA_0)		YES

								Direct Memory Access Multiplexer (2 x DMAMUX)		YES

								System Timer Module (STM x3)		YES

								Software Watchdog Timer (SWT x3)				YES

								Periodic Interrupt Timer (PIT)		YES

								Reset Generation Module (MC_RGM)		YES

								Mode Entry Module (MC_ME)		YES

								Boot Assist Module (BAM)						Not Safety Related module - Boot logic

								System Status and Configuration Module (SSCM)						Not Safety Related module - Boot logic

								JTAG Controller (JTAGC)						Not Safety Related module - Debug logic

								Nexus debug modules (NXMC, NPC, NAL & NAP)						Not Safety Related module - Debug logic

								Cyclic Redundancy Check (CRC)				YES

								Fault Collection and Control Unit (FCCU)				YES

								Memory Error Management Unit (MEMU)				YES

								Self-Test Control Unit (STCU2) (includes MBIST & LBIST)				YES

								Register Protection (REG_PROT)				YES		Handled within related module entries in FMEDA.

				Communication (External)		Peripheral		CAN (1 xFlexCAN(PN), 7 x FlexCAN)						Peripheral module - High application dependency (failure rates only)

								Inter-Integrated Communication (5 xIIC)						Peripheral module - High application dependency (failure rates only)

								Semaphores (SEMA42)						Peripheral module - High application dependency (failure rates only)

								Media Local Bus (MLB150)						Peripheral module - High application dependency (failure rates only)

								Deserial Serial Peripheral Interface (4 x DSPI)						Peripheral module - High application dependency (failure rates only)

								Serial Peripheral Interface (6 x SPI)						Peripheral module - High application dependency (failure rates only)

								FlexRay Communication Controller (FlexRay)						Peripheral module - High application dependency (failure rates only)

								LINFlexD (18 x LINFlexD)						Peripheral module - High application dependency (failure rates only)

								10/100-Mbps Ethernet MAC (ENET)						Peripheral module - High application dependency (failure rates only)

								Universal Serial Bus (USB_OTG)						Peripheral module - High application dependency (failure rates only)

				Analogue I/O and Digital I/O				Peripheral Bridge (2 x PBRIDGE)						Peripheral module - High application dependency (failure rates only)

								System Integration Unit Lite2 (SIUL2)						Peripheral module - High application dependency (failure rates only)

								Analog to Digital Converter (2 x ADC)						Peripheral module - High application dependency (failure rates only)

								Analog Comparator (3 xACMP)						Peripheral module - High application dependency (failure rates only)

								Synchronous Audio Interface (3 xSAI)						Peripheral module - High application dependency (failure rates only)

								Enhanced Modular IO Subsystem (3 x eMIOS)						Peripheral module - High application dependency (failure rates only)

								Ultra Secure Digital Host Controller (uSDHC)						Peripheral module - High application dependency (failure rates only)

								Hardware Security Module (HSM)						Peripheral module - High application dependency (failure rates only)

								Password and Device Security Module (PASS)						Peripheral module - High application dependency (failure rates only)

								Tamper Detect Module (TDM)						Peripheral module - High application dependency (failure rates only)

								Body Cross-Triggering Unit (BCTU)						Peripheral module - High application dependency (failure rates only)

								Low Power Unit (LPU)						Peripheral module - High application dependency (failure rates only)

								Wakeup Unit (WKPU)						Peripheral module - High application dependency (failure rates only)

Release notes

		

				Changes since SM Rev. 2:

				Changed spreadsheet name to simply "Module Classification".

				Changed "SPC5748G" to "MPC5748G".

				Slow Internal RC Oscillator: Removed the "watchdog reference" comment.

				In "Register Protection (REG_PROT)", changed the comment "Not explicitly handled in FMEDA" to "Handled within related module entries in FMEDA."

