CC256xCQFN-EM

User's Guide

Literature Number: SWRU493A November 2016–Revised November 2016

Contents

_				
1	Introdu		he CC256xCQFN-EM Board	
	1.1	Key Feat	ures	. 5
	1.2	QFN EM	Board Applications	. 5
2	Module	Descript	ion	6
3			Description	
	3.1	Pin Desc	ription	. 7
		3.1.1	Board Jumpers	
		3.1.1.1	Measuring Current Consumption	
		3.1.2	Antenna and U.FL Selector	
		3.1.3	RF Connectors	. 8
		3.1.4	Debug Header	. 9
		3.1.5	COM Connector	10
	3.2	Clock Inp	uts	12
4	Module	Dimensi	ons	12
5	Tools a	nd Softwa	are	13
	5.1	TI's Bluet	ooth [®] Software Solution	13
	5.2	Evaluatio	n Platforms	13
	5.3	Bluetooth	[®] Hardware Evaluation Tool	13
6	Certifica	ation		14
7	Life Support Policy			14
8	Related Documents			
Revis	sion Histo	ory		15

List of Figures

1	CC256xCQFN-EM Board	4
2	CC2564xCQFN-EM Highlights	6
3	CC256xCQFN-EM Block Diagram	7
4	CC256XCQFN-EM PCM Role Selection for RF Connectors	9
5	COM Connector Pinout	10
6	CC256XCQFN-EM Hardware Modifications for COM Connector	11
7	CC256xC Clocking Scheme	12
8	CC256xCQFN-EM Hardware Configuration	13

List of Tables

1	Jumper Configuration	7
2	RF1	8
3	RF2	8
4	DEBUG HDR	9
5	COM CARD	10
6	Module Dimensions	12

User's Guide SWRU493A–November 2016–Revised November 2016

CC256xCQFN-EM

1 Introduction to the CC256xCQFN-EM Board

This user's guide is intended for use with TI's Bluetooth[®] development platform, the CC256xCQFN-EM board (see Figure 1). This guide helps users quickly get started integrating the board with TI's evaluation platforms and software SDKs. In addition, this user's guide describes the components and configurations of the board so that users can quickly get started using it for various Bluetooth applications.

This guide provides information about the module so that developers can use the board specifics to apply it to their applications. Module information and capabilities, including pin descriptions as well as available software and tools, enhance the user's out-of-box experience.

Figure 1. CC256xCQFN-EM Board

Code Composer Studio is a trademark of Texas Instruments. Bluetooth is a registered trademark of Bluetooth SIG, Inc. All other trademarks are the property of their respective owners. TEXAS INSTRUMENTS

www.ti.com

1.1 Key Features

- Bluetooth specification 4.1 / 4.2
- Fast time to market
- Easy PCB layout using cadence tools
- 4-layer PCB design
- Bluetooth and Bluetooth low energy
- TI's Bluetooth royalty-free stack with profiles
- FCC, IC, and Bluetooth SIG compliant
- High sensitivity (-93 dBm typical)
- Shield enabled for immunity
- H4 UART and PCM/I2S interface

1.2 QFN EM Board Applications

The following are example embedded wireless applications:

- Wireless Audio Solutions
- mPOS
- Medical Devices
- Set-Top Boxes (STBs)
- Wearable Devices
- Sensor Hub, Sensor Gateway
 - Home and Factory Automation

2 Module Description

The CC256xC QFN EM board is the development environment for the CC256x family and plugs into TI's MSP432[™] LaunchPad[™] through the BOOST-CCEMADAPTER board.

This family is based on TI's CC256xC integrated circuit and uses a host controller interface (HCI), a costeffective and flexible means for implementing a Bluetooth network. The HCI reduces BOM cost by eliminating redundant processing capacity and gives designers the flexibility to work with a controller of their choice, because the Bluetooth stack resides and executes on the host processor of the application. Figure 2 highlights various aspects of the CC256xCQFN-EM board.

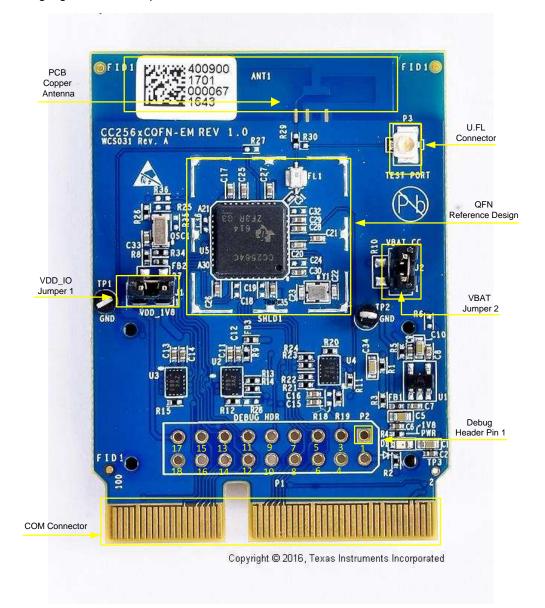


Figure 2. CC2564xCQFN-EM Highlights

The CC256xCQFN-EM board is intended for evaluation purposes and works with TI's Hardware Development Kit. See Section 6 for more information.

To help implement this reference design, schematics and layout files are available on the CC256x Main Wiki page.

Module Detailed Description

www.ti.com

3 Module Detailed Description

The reference files including schematics, layout, and BOM for the CC256xCQFN-EM board can be found at: CC256xCQFN-EM Reference Design.

Figure 3 shows a block diagram depicting the I/Os of the QFN board that are required for interfacing to the host controller. These I/Os can be interfaced to the host controller through either the COM connector or the RF1 and RF2 sockets.

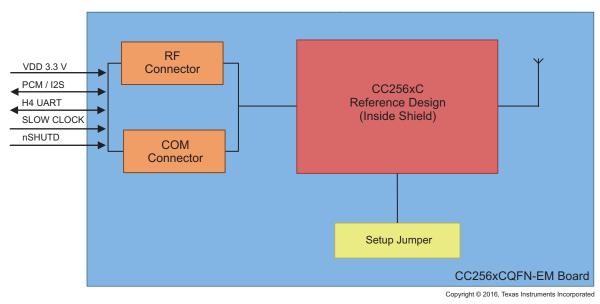


Figure 3. CC256xCQFN-EM Block Diagram

3.1 Pin Description

3.1.1 Board Jumpers

For correct operation, ensure both jumpers are placed for connecting power to the device as follows in Table 1.

Table 1. Jumper C	Configuration
-------------------	---------------

Jumper	Description	
VBAT_CC	Main power supply for CC256xC	
VDD_1V8	Supplies power to CC256xC I/Os	

3.1.1.1 Measuring Current Consumption

These jumpers can also be used to measure the current consumption by placing current sense resistors on R10 for VBAT_CC and on R7 for VDD_1V8. Both these resistors are 0.10 Ω , 1/4 W. The VBAT_CC jumper can be used to to measure the voltage and power consumed by the CC256xC, including RF TX and RX while the VDD_IO jumper can be used to measure voltage and power consumed by the digital I/Os.

3.1.2 Antenna and U.FL Selector

The board can be configured to route the RF output from the CC256xC to the onboard copper antenna or the onboard U.FL connector. This configuration is done by placing the resistor in either the R29 or R30 position which has negligible resistance of 0 Ω . R30 connects the RF to the U.FL while R29 connects to the copper antenna. The U.FL connector is used for conducted testing of the RF. The Bluetooth Hardware Evaluation Tool (BHET) can be used to test basic RF functionality on this board.

3.1.3 RF Connectors

The RF1 and RF2 connectors can be sued to mount the TI MSP432 platform using the BOOST-CCEMADAPTER board. The RF I/Os are all at 3.3-V levels; this enables seamless integration of the host using TI's platforms that comes preinstalled with EM headers. Table 2 and Table 3 describe the standard pinout.

Pin No.	EM Adapter Pin Assignment	Pin No.	EM Adapter Pin Assignment
1	GND	2	NC
3	MODULE_UART_CTS	4	NC
5	SLOW_CLK	6	NC
7	MODULE_UART_RX	8	NC
9	MODULE_UART_TX	10	NC
11	NC (not connected)	12	NC
13	NC	14	NC
15	NC	16	NC
17	NC	18	NC
19	GND	20	NC

Table 2. RF1

Table 3. RF2

Pin No.	EM Adapter Pin Assignment	Pin No.	EM Adapter Pin Assignment
1	NC	2	GND
3	NC	4	NC
5	NC	6	NC
7	3.3 V	8	MODULE_AUDIO_DATA_OUT
9	3.3 V	10	MODULE_AUDIO_DATA_IN
11	MODULE_AUDIO_FSYNC	12	NC
13	NC	14	NC
15	NC	16	NC
17	MODULE_AUDIO_CLK	18	MODULE_UART_RTS
19	WCS_NSHUTD	20	NC

For complete evaluation of the audio applications while using the RF connectors (a.k.a. EM connectors), the level shifter U4 must be properly configured in order to ensure proper direction of PCM signals.

- When using CC256XC as PCM master role (for A3DP Sink, HFP and HSP profiles),
 - R19 must be populated with 10K resistor.
 - R18 and R11 must be unpopulated (removed).
- When using CC256XC as PCM slave (for A3DP Source profile),
 - R18 must be populated with 10K resistor.
 - R19 and R11 must be unpopulated (removed),

More information on the hardware changes required for PCM signals on EM connectors can be found in the CC256XCQFN-EM board design files (schematics and bill of materials).

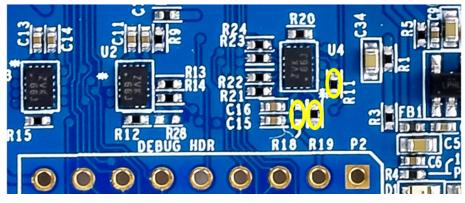


Figure 4. CC256XCQFN-EM PCM Role Selection for RF Connectors

3.1.4 Debug Header

The debug header is provided for testing and debugging purposes. The debug header exposes important signals used in the design such as power, ground, debug, UART, and audio signals. All I/Os are at 1.8 V. Table 4 shows the pinout.

Pin No.	EM Adapter Pin Assignment	Pin No.	EM Adapter Pin Assignment
1	GND	2	VBAT
3	VIO_HOST	4	GND
5	AUD_FSYNC_1V8	6	AUD_CLK_1V8
7	AUD_OUT_1V8	8	AUD_IN_1V8
9	CLK_REQ_OUT_1V8	10	SLOW_CLK_EDGE
11	HCI_TX_1V8	12	HCI_RX_1V8
13	HCI_CTS_1V8	14	HCI_RTS_1V8
15	TX_DEBUG_1V8	16	nSHUTDOWN_1V8
17	VDD_1V8	18	GND

Table 4. DEBUG HDR

Module Detailed Description

3.1.5 COM Connector

The COM connector, or edge card, is used to interface with TI's MPUs such as the AM437x and AM335x EVMs. As shown in Figure 5, the COM connector provides HCI, audio, slow clock, shutdown, and debug interfaces to the host connected through the edge card. All I/Os for the COM connector are at 1.8 V. Some components must be DNI to use the COM connector. See the BOM for details.

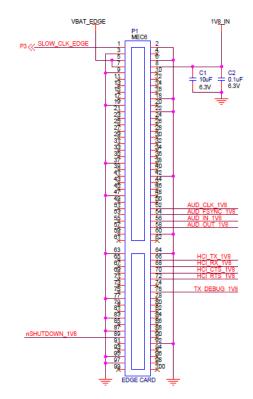


Figure 5. COM Connector Pinout

Table 5 lists the COM card pinout.

Table 5. COM CARD

Pin No.	Relevant COM Connector Pin Assignment	
1	SLOW_CLK_EDGE	
8	1V8_IN	
52	AUD_CLK_1V8	
54	AUD_FSYNC_1V8	
56	AUD_IN_1V8	
58	AUD_OUT_1V8	
66	HCI_TX_1V8	
68	HCI_RX_1V8	
70	HCI_CTS_1V8	
72 HCI_RTS_1V8		
76 TX_DEBUG_1V8		
89	nSHUTDOWN_1V8	

Pins 3, 9, 19, 37, 47, 63, 77, 83, 87, 95, and 97, as well as 2, 6, 18, 22, 42, 60, 64, and 92 are connected to ground.

All other pins are NC.

Some components must be removed (DNI) and R2 must be populated on the CC256XCQFN-EM to use the COM connector with the AM335x evaluation module (TMDXEVM3358) or similar Sitara EVM.

- EM1, EM2, U2, U3, and U4 must be unpopulated (removed).
- R2 (0 Ω) must be populated.

More information on the hardware changes required for the COM connector are in the CC256XCQFN-EM board design files (schematics and bill of materials).

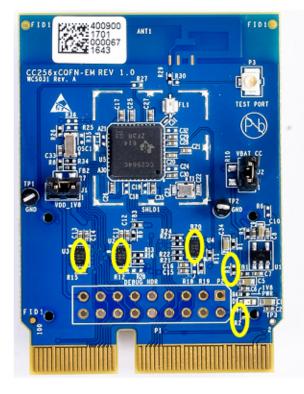


Figure 6. CC256XCQFN-EM Hardware Modifications for COM Connector

3.2 Clock Inputs

The slow clock can come from two sources, internal and external to the board. The CC256xCQFN-EM has the option to place the slow clock on the board or source it from an external source. The source is connected to the SLOW_CLK_IN (see Figure 7) and can be a digital signal in the range of 0 to 1.8 V.

The frequency accuracy of the slow clock must be 32.768 kHz and ± 250 ppm for Bluetooth use (according to the Bluetooth specification).

When the MSP432 Launchpad is connected, the SLOW_CLK_IN signal, is sourced from the oscillator on the CC256xCQFN-EM board, therefore no additional clock source is needed.

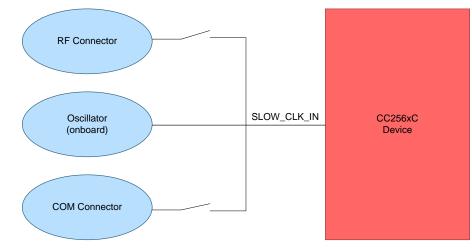


Figure 7. CC256xC Clocking Scheme

4 Module Dimensions

Table 6 lists the module dimensions.

Table 6. Module Dimensions

No.	Item	Dimension (in)	Tolerance	Remark
1	Width	1.550	± 0.001	Smaller at COM end
2	Length	2.125	± 0.001	—
3	Height	0.062	± 0.001	—

5 Tools and Software

5.1 TI's Bluetooth[®] Software Solution

The Bluetooth software based solution is based on TI's Bluetooth stack, such as the CC2564CMSP432BTBLESW. Detailed documentation is in the previous SDK.

5.2 Evaluation Platforms

TI supports the MSP432 LaunchPad (MSP-EXP432P401R).

In addition, a software development environment, for example Code Composer Studio[™], is required. For a detailed description on use of these tools, refer to the CC256xC EVM Platform. Evaluation kits and modules are available through TI's network of authorized distributors.

Figure 8 shows the CC256xCQFN-EM board mounted to the MSP-EXP432P401R using the BOOST-CCEMADAPTER board, which uses the RF1 and RF2 interface board.

Copyright © 2016, Texas Instruments Incorporated

Figure 8. CC256xCQFN-EM Hardware Configuration

5.3 Bluetooth[®] Hardware Evaluation Tool

The CC256x Bluetooth Hardware Evaluation Tool can be downloaded as a complete package from TI. This program is an intuitive, user-friendly tool to test TI's Bluetooth chips including this CC256xCQFN-EM board. More specifically, the program is used to measure RF performance of TI's Bluetooth chips.

6 Certification

Certifications for the CC256xCQFN-EM board include the CE Mark - Conformité Européenne. The CC256xC is also in the process of being certified as a Bluetooth controller subsystem by Bluetooth SIG (Special Interest Group).

NOTE: This device is an engineering development board and cannot be used in an end product.

7 Life Support Policy

CAUTION

This TI product is not designed for use in life support appliances, devices, or systems where malfunction can reasonably be expected to result in a significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. TI customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TI for any damages resulting.

8 Related Documents

- CC2564C Data Sheet
- CC256x System Design Guide
- CC256xQFN PCB Guidelines
- QFN Reference Design

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (November 2016) to A Revision

Page

_		
•	Added text to RF Connectors section	8
•	Added CC256XCQFN-EM PCM Role Selection for RF Connectors	9
•	Added text in COM Connector section	11
•	Added CC256XCQFN-EM Hardware Modifications for COM Connector image	11

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Audio Amplifiers Data Converters DLP® Products	www.ti.com/audio amplifier.ti.com dataconverter.ti.com www.dlp.com	Applications Automotive and Transportation Communications and Telecom Computers and Peripherals Consumer Electronics	www.ti.com/automotive www.ti.com/communications www.ti.com/computers www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated