

About this document

Scope and purpose

This document is an engineering report that describes a universal-input 42 W 12 V and 5 V off-line flyback converter using the latest 5th generation Infineon QR CoolSET™ ICE5QR0680AG. It offers high-efficiency, low-standby power with selectable entry and exit standby power options, wide V CC operating range with fast start-up, robust line protection with input Over Voltage Protection (OVP), and brownout and various modes of protection for a highly reliable system. This demo board is designed for users who wish to evaluate the performance of ICE5QR0680AG and its ease of use.

Intended audience

This document is intended for power-supply design/application engineers, students, etc., who wish to design low-cost and highly reliable systems of off-line SMPS, such as auxiliary power supplies for white goods, PCs, servers and TVs, or enclosed adapters for blu-ray players, set-top boxes, games consoles, etc.

Table of contents

About 1	this document	
Table o	of contents	
1	Abstract	3
2	Demo board	4
3	Specifications of the demo board	5
4	Circuit description	6
4.1	Line input	6
4.2	Start-up	6
4.3	Integrated MOSFET and PWM control	6
4.4	Clamper circuit	6
4.5	Output stage	6
4.6	Feedback loop	
4.7	Primary side peak-current control	6
4.8	Digital frequency reduction	
4.9	Active Burst Mode (ABM)	7
5	Protection features	8
6	Circuit diagram	9
7	PCB layout	11
7.1	Top side	11
7.2	Bottom side	11
8	Bill of materials	12
9	Transformer construction	14
10	Test results	16

Abstract

10.1	Efficiency, regulation and output ripple	16
10.2	Standby power	17
10.3	Line regulation	18
10.4	Load regulation	19
10.5	Maximum input power	20
10.6	ESD immunity (EN 61000-4-2)	20
10.7	Surge immunity (EN 61000-4-5)	20
10.8	Conducted emissions (EN 55022 class B)	20
10.9	Thermal measurement	23
11	Waveforms and scope plots	24
11.1	Start-up at low/high AC-line input voltage with maximum loadload	
11.2	Soft-start	
11.3	Drain and CS voltage at maximum load	25
11.4	Zero crossing point during normal operation	25
11.5	Load transient response (dynamic load from 10% to 100%)	
11.6	Output ripple voltage at maximum load	26
11.7	Output ripple voltage at ABM 1 W load	27
11.8	Entering ABM	27
11.9	During ABM	28
11.10	Leaving ABM	28
11.11	Line OVP (non-switch auto restart)	29
11.12	Brownout protection (non-switch auto restart)	29
11.13	V _{CC} OVP (odd-skip auto restart)	30
11.14	V _{CC} under-voltage protection (auto restart)	
11.15	Over-load protection (odd-skip auto restart)	31
11.16	Output OVP (odd-skip auto restart)	31
11.17	V _{CC} short-to-GND protection	32
12	References	33
Dovision	a history	າາ

Abstract

1 Abstract

This AN is an engineering report for a 42 W 12 V and 5 V demo board designed in a QR flyback converter topology using the 5th generation QR CoolSET™ ICE5QR0680AG. The target applications of ICE5QR0680AG are either auxiliary power supplies for white goods, PCs, servers or TVs, or enclosed adapters for Blu-ray players, set-top boxes, games consoles, etc. With the CoolMOS™ integrated into this IC, it greatly simplifies the design and layout of the PCB. The new improved digital frequency reduction with proprietary QR operation offers lower EMI and higher efficiency for a wide AC range by reducing the switching frequency difference between low- and high-line. The enhanced Active Burst Mode (ABM) power enables flexibility in standby power operation range selection, and QR operation during ABM. As a result, the system efficiency over the entire load range is significantly improved compared to a conventional free-running QR converter implemented with only maximum switching frequency limitation at light loads. In addition, numerous adjustable protection functions have been implemented in ICE5QR0680AG to protect the system and customize the IC for the chosen application. In case of failure modes such as brownout or line over-voltage, V CC over-/under-voltage, open control-loop or over-load, output over-voltage, over-temperature, V CC short-to-ground and Current Sense (CS) short-to-ground, the device enters protection mode. By means of the cycle-by-cycle Peak Current Limitation (PCL), the dimensions of the transformer and the current rating of the secondary diode can both be optimized. Thus, a cost-effective solution can easily be achieved.

Demo board

2 Demo board

This document contains the list of features, the power-supply specifications, schematics, bill of materials and the transformer construction documentation. Typical operating characteristics such as performance curve and scope waveforms are shown at the end of the report.

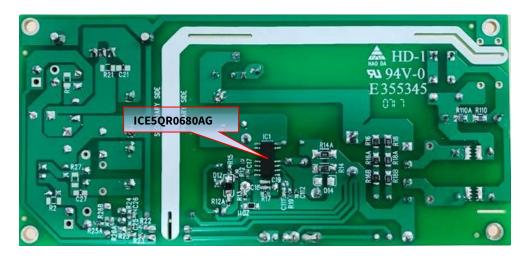


Figure 1 DEMO_5QR0680AG_42W1

Specifications of the demo board

Specifications of the demo board 3

Table 1 Specifications of DEMO_5QR0680AG_42W1

85 V AC (60 Hz)~300 V AC (50 Hz)
(12 V x 3.41 A) + (5 V x 0.2 A) = 42 W
±5% of nominal output voltage
5 V _{ripple_p_p} < 100 mV 12 V _{ripple_p_p} < 150 mV
> 84% at 115 V AC and 230 V AC
< 100 mW at 230 V AC
Pass with 6 dB margin for 115 V AC and 230 V AC
Special level (±10 kV for contact and air discharge)
Installation class 4 (±2 kV for line-to-line and ±4 kV for line-to-earth)
(140 x 66 x 40) mm ³

Note: The demo board is designed for dual output with cross-regulated loop feedback. It may not regulate properly if loading is applied only to single output. If the user wants to evaluate for single-output (12 V only) conditions, the following changes are necessary on the board.

- 1. Remove D22, L22, C28, C210, R25A (to disable 5 V output)
- 2. Change R26 to 10 k Ω and R25 to 38 k Ω (to disable 5 V feedback and enable 100% weighted factor on 12 Voutput)

Since the board (especially the transformer) is designed for dual output with optimized crossregulation, single-output efficiency might not be optimized. It is only for IC functional evaluation under single-output conditions.

Circuit description

Circuit description 4

4.1 **Line input**

The AC-line input side comprises the input fuse F1 as over-current protection. The choke L11, X-capacitors C11 and C14 and Y-capacitors C12, C12A and C12B act as EMI suppressors. Optional spark-gap devices SA1, SA2 and varistor VAR can absorb HV stress during a lightning surge test. A rectified DC voltage (120~424 V DC) is obtained through the bridge rectifier BR1 together with the bulk capacitor C13.

4.2 Start-up

To achieve fast and safe start-up, ICE5QR0680AG is implemented with a start-up resistor and V CC short-to-GND protection. When V_{VCC} reaches the turn-on voltage threshold 16 V, the IC begins with a soft-start. The soft-start implemented in ICE5QR0680AG is a digital time-based function. The preset soft-start time is 12 ms with four steps. If not limited by other functions, the peak voltage on the CS pin will increase in increments from 0.3 V to 1 V. After IC turn-on, the V CC voltage is supplied by auxiliary windings of the transformer. V CC short-to-GND protection is implemented during the start-up time.

4.3 **Integrated MOSFET and PWM control**

ICE5QR0680AG is comprised of a power MOSFET and the new proprietary QR controller, which enables higher average efficiency and low EMI. This integrated solution greatly simplifies the circuit layout and reduces the cost of PCB manufacture. The PWM switch-on is determined by the Zero Crossing Detection (ZCD) input signal and the value of the up/down counter. The PWM switch-off is determined by the feedback (FB) signal V_{FB} and the CS signal V_{cs}. ICE5QR0680AG also performs all necessary protection functions in Flyback converters. Details about the information mentioned above are illustrated in the product datasheet.

4.4 Clamper circuit

A clamper network (R11, C15 and D11) dissipates the energy of the leakage inductance and suppresses ringing on the SMPS transformer.

4.5 Output stage

There are two outputs on the secondary side, 12 V and 5 V. The power is coupled out via Schottky diodes D21 and D22. The capacitors C22, C23 and C28 provide energy buffering, followed by the L-C filters L21-C24 and L22-C210 to reduce the output ripple and prevent interference between SMPS switching frequency and line frequency. Storage capacitors C22, C23 and C28 are designed to have as small an internal resistance (ESR) as possible to minimize the output voltage ripple caused by the triangular current.

4.6 Feedback loop

For FB, the output is sensed by the voltage divider of R26, R25 and R25A and compared to the IC21 (TL431) internal reference voltage. C25, C26 and R24 comprise the compensation network. The output voltage of IC21 (TL431) is converted to the current signal via optocoupler IC12 and two resistors, R22 and R23, for regulation control.

4.7 Primary side peak-current control

The MOSFET drain source current is sensed via external resistors R14 and R14A. Since ICE5QR0680AG is a current mode controller, it would have a cycle-by-cycle primary current and FB voltage control, which ensures the converter's maximum power is controlled in every switching cycle.

Circuit description

For a QR flyback converter, the maximum possible output power is increased when a constant current limit value is used for the whole-line input voltage range. This is usually not desirable, as this will increase the cost of the transformer and output diode in case of output over-power conditions.

Internal current limitation with a line-dependent V_{cs} curve and the new proprietary QR switching, which reduces switching frequency difference between the minimum and maximum line, are implemented in the ICE5QR0680AG. As a result, the maximum output power can be limited against the input voltage.

Digital frequency reduction 4.8

During normal operation, the switching frequency for ICE5QR0680AG is digitally reduced with decreasing load. At light loads, the MOSFET will be turned on – not at the first minimum drain-source voltage time, but on the nth. The counter is within a range of 1 to 8 for low-line and 3 to 10 for high-line, which depends on FB voltage in a time-base. The FB voltage decreases when the output power requirement decreases, and vice versa. Therefore, the counter is set by monitoring voltage V_{FB}. The counter will be increased with low V_{FB} and decreased with high V_{FB}. The thresholds are preset inside the IC.

4.9 **Active Burst Mode (ABM)**

ABM entry and exit power (two levels) can be selected in ICE5QR0680AG. Details are illustrated in the product datasheet. ABM power level 1 is used in this demo board (R17 = open). In light load conditions, the SMPS enters ABM with QR switching. At this stage, the controller is always active but the V_{VCC} must be kept above the switchoff threshold. During ABM, the efficiency increases significantly and at the same time it supports low ripple on V_{out} and fast response on load-jump.

For determination of entering ABM operation, three conditions apply:

- 1. The FB voltage is lower than the threshold of V_{FB_EBLX}
- 2. The up/down counter is 8 for low-line and 10 for high-line, and
- 3. A certain blanking time ($t_{FB BEB} = 20 \text{ ms}$) is required

Once all of these conditions are fulfilled, the ABM flip-flop is set and the controller enters ABM operation. This multi-condition determination for entering ABM operation prevents mis-triggering of ABM, so that the controller enters ABM operation only when the output power is really low during the preset blanking time.

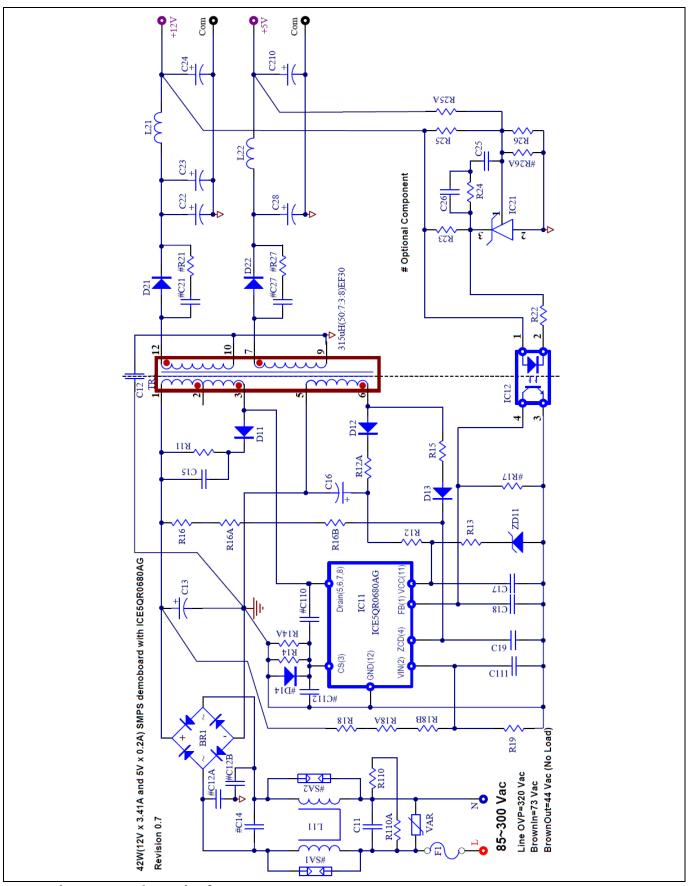
During ABM, the maximum CS voltage is reduced from V_{CS_N} to V_{CS_BLX} to reduce the conduction loss and the audible noise. In ABM, the FB voltage changes like a sawtooth between V_{FB} goff and V_{FB} gon.

The FB voltage immediately increases if there is a high load-jump. This is observed by one comparator. As the current limit is 31/35% during ABM a certain load is needed so that FB voltage can exceed V_{FB} LB. After leaving ABM, maximum current can now be provided to stabilize Vout. In addition, the up/down counter will be set to 1 (low-line) or 3 (high-line) immediately after leaving ABM. This is helpful to decrease the output voltage undershoot.

Protection features

Protection features 5

Protection is one of the major factors in determining whether the system is safe and robust – therefore sufficient protection is necessary. ICE5QR0680AG provides comprehensive protection to ensure the system is operating safely. This includes line over-voltage, brownout, V CC over-voltage and under-voltage, over-load, output over-voltage, over-temperature (controller junction), CS short-to-GND and V CC short-to-GND. When those faults are found, the system will go into protection mode. Once the fault is removed, the system resumes normal operation. A list of protections and failure conditions are shown in the table below.


Table 2 **Protection functions of ICE5QR0680AG**

Protection function	Failure condition	Protection mode
Line over-voltage	V _{VIN} > 2.9 V	Non-switch auto restart
Brownout	V _{VIN} < 0.4 V	Non-switch auto restart
V CC over-voltage	V _{VCC} > 25.5 V	Odd-skip auto restart
V CC under-voltage	V _{VCC} < 10 V	Auto restart
Over-load	V _{FB} > 2.75 V and lasts for 30 ms	Odd-skip auto restart
Output over-voltage	V _{ZCD} > 2 V and lasts for 10 consecutive pulses	Odd-skip auto restart
Over-temperature (junction temperature of controller chip only)	$T_J > 140$ °C with 40°C hysteresis to reset	Non-switch auto restart
CS short-to-GND	V _{cs} < 0.1 V, lasts for 5 µs and 3 consecutive pulses	Odd-skip auto restart
$\overline{V CC \text{ short-to-GND}}$ (V _{VCC} = 0 V, R _{StartUp} = 50 MΩ and V _{Drain} = 90 V)	$V_{VCC} < 1.1 \text{ V}, I_{VCC_Charge1} \approx -0.2 \text{ A}$	Cannot start up

Circuit diagram

6 Circuit diagram

9

Figure 2 Schematic of DEMO_5QR0680AG_42W1

Application Note

Circuit diagram

Note: General guidelines for layout design of PCB:

- Star ground at bulk capacitor C13: all primary grounds should be connected to the ground of bulk capacitor C13 separately in one point. This effectively reduces the switching noise going into the sensitive pins of the CoolSET™ device. The primary star ground can be split into four groups, as follows:
 - Combine signal (all small signal grounds connecting to the CoolSET™ GND pin, such as filter capacitor grounds C17, C18, C19, C111, C112 and optocoupler ground) and power grounds (CS resistors R14 and R14A)
 - V CC ground includes the V CC capacitor ground C16 and the auxiliary winding ground, pin 5 of the power transformer
 - iii. EMI return ground includes Y capacitor C12
 - DC ground from bridge rectifier BR1
- Filter capacitor close to the controller ground: filter capacitors C17, C18, C19, C111 and C112 should be placed as close to the controller ground and the controller pin as possible to reduce the switching noise coupled into the controller.
- HV traces clearance: HV traces should retain enough spacing from the nearby traces. Otherwise, arcing could occur.
 - i. 400 V traces (positive rail of bulk capacitor C13) to nearby trace: greater than 2.0 mm
 - 600 V traces (drain voltage of CoolSET™ IC11) to nearby trace: greater than 2.5 mm
- Recommended minimum 232 mm² copper area at drain pin to add on PCB for better thermal performance.
- Power-loop area (bulk capacitor C13, primary winding of the transformer TR1 (pins 1 and 3), IC11 drain pin, IC11 CS pin and CS resistor R14/R14A) should be as small as possible to minimize the switching emissions.

PCB layout

PCB layout 7

7.1 Top side

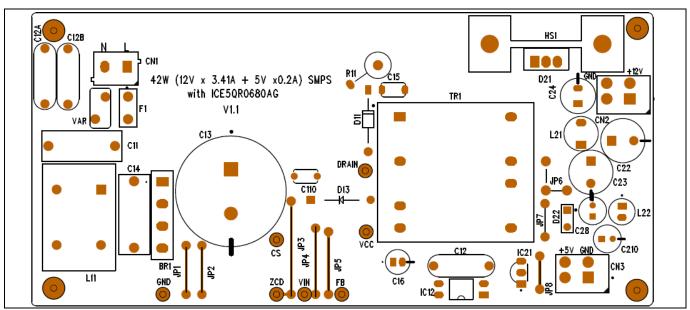


Figure 3 Top side component legend

7.2 **Bottom side**

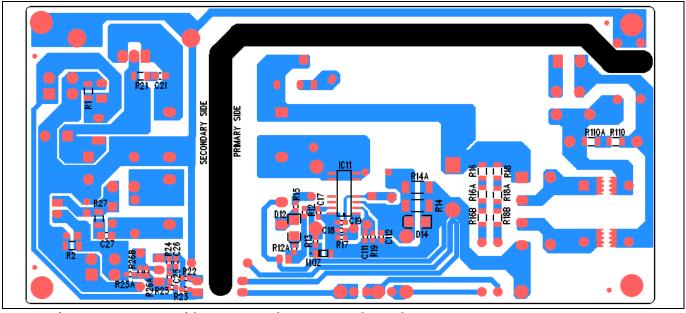


Figure 4 **Bottom side copper and component legend**

Bill of materials

Bill of materials 8

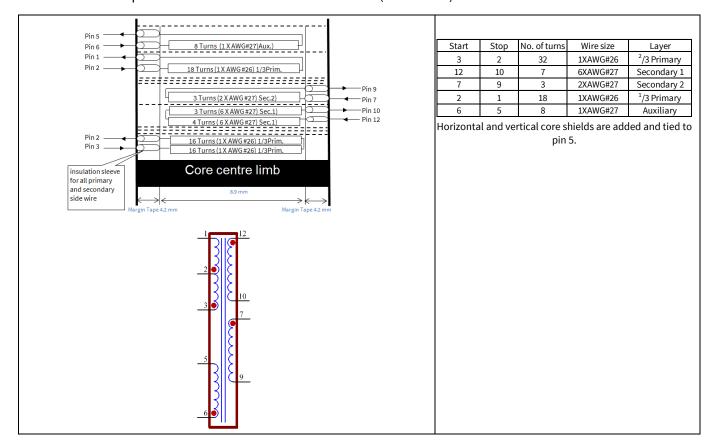
Bill of materials (R0.7) Table 3

No.	Designator	Description	Part number	Manufacturer	Quantity
1	BR1	600 V/2 A	D2SB60A	Shindengen	1
2	C11	0.33 μF/305 V	B32922C3334M*** Epc		1
3	C12	2.2 nF/500 V	DE1E3RA222MA4BQ	Murata	1
4	C13	120 μF/450 V	ESMQ451VSN121MP30S		1
5	C15	2.2 nF/1000 V	RDE7U3A222J3K1H03	Murata	1
6	C16	33 μF/50 V	50PX33MEFC5X11	Rubycon	1
7	C17	100 nF/50 V	GRM188R71H104KA93D	Murata	1
8	C18, C26	1 nF/50 V	GRM1885C1H102GA01D	Murata	2
9	C19	68 pF/50 V	GRM1885C1H680GA01D	Murata	1
10	C111	22 nF/50 V	GCM188R71H223KA37D	Murata	1
11	C22, C22A	1000 uF/16 V	16ZLH1000MEFC10X16	Rubycon	2
12	C24	470 uF/16 V	16ZLH470MEFC8X11.5	Rubycon	1
13	C25	220 nF/50 V	GRM188R71H224KAC4D	Murata	1
14	C28, C210	330 uF/10 V	10ZLH330MEFC6.3X11	Rubycon	2
15	D11	1 A/800 V	UF4006		1
16	D12	0.2 A/200 V	BAV20WS		1
17	D13	0.2 A/150 V/50 ns	FDH400		1
18	D21	30 A/100 V	VF30100SG		1
19	D22	1 A/50 V	SB150		1
20	F1	2 A/300 V	36912000000		1
21	HS21	Heatsink	513002B02500G		1
22	IC11	ICE5QR0680AG	ICE5QR0680AG	Infineon	1
23	IC12	Optocoupler	SFH617A-3		1
24	IC21	Shunt regulator	TL431BVLPG		1
25	JP1, JP2, JP3, JP4, JP5, JP6	Jumper			7
26	L11	33 mH/1.4 A	CL4003301	MEC	1
27	L21	2.2 uH/6 A	744772022	Wurth Electronics	1
28	L22	4.7 uH/4.2 A	744 746 204 7	Wurth Electronics	1
29	R11	33 kR/2 W/350 V	ERG-2SJ333A	Panasonic	1
30	R12	27 Ω (0603)			1
31	R12A	0 Ω (0603)			1
32	R13	27 Ω (0603)			1
33	R14	0.81 R/0.5 W/±1%	RCWE1206R820FKEA		1
34	R14A	0.91 R/0.5 W/±1%	RCWE1206R910FKEA		1
35	R15	24 kΩ/±1% (0603)			1
36	R16, R16A	15 MR (1206)	RC1206JR-0715ML		2
37	R16B	20 MR (1206)			1
38	R18, R18A, R18B	3 MR (1206)	RC1206FR-073ML		2
39	R19	59 kR/0.5% (0603)	ERJ-3RBD5902V		1
40	R110, R110A	1.5 MΩ/200 V (1206)			2
41	R22	820 Ω (0603)			1

Bill of materials

42	R23	1.2 kΩ (0603)			1
43	R24	12 kΩ (0603)			1
44	R25	16 kΩ (0603)			1
45	R25A	6.2 kΩ (0603)			1
46	R26	2.49 kΩ (0603)			1
47	TR1	315 µH	750343506(R03)	Wurth Electronics	1
48	Test point of FB, VIN, CS, ZCD, Drain, V_{cc} , GND	Test point	5010		7
49	VAR	0.25 W/320 V	B72207S2321K101	Epcos	1
50	ZD11	22 V (SOD123)	MMSZ5251B-7-F		1
51	Con (L N)	Connector	691102710002	Wurth Electronics	1
52	Con (+12 V com), Con (+5 V com)	Connector	691 412 120 002B	Wurth Electronics	2

Transformer construction


9 Transformer construction

Core and materials: EE30/15/7 (EF30), TP4A (TDG)

Bobbin: 070-5313 (12-pin, THT, horizontal version)

Primary inductance: Lp = 315 μ H (±10%), measured between pin 1 and pin 3

Manufacturer and part number: Wurth Electronics Midcom (750343506)

Transformer construction

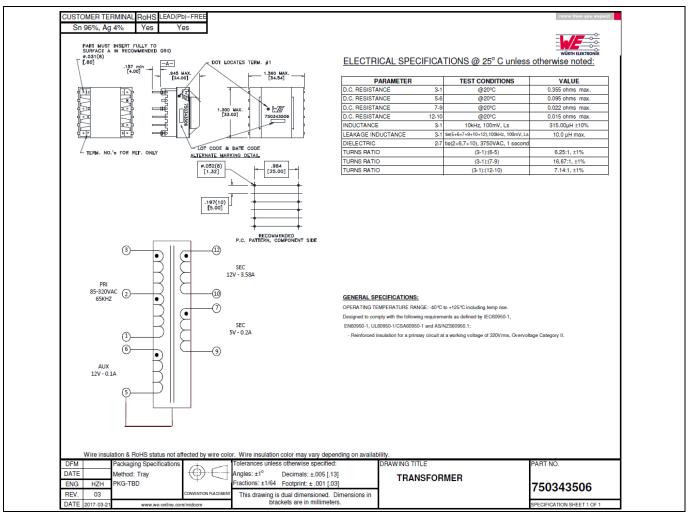


Figure 5 Transformer structure

Test results

10 Test results

10.1 Efficiency, regulation and output ripple

Table 4 Efficiency, regulation and output ripple

Input (V AC/Hz)	P _{in} (W)	V₅ (V DC)	I ₅ (A)	V _{5RPP} (mV)	V ₁₂ (V DC)	I ₁₂ (A)	V _{12RPP} (mV)	P _{out} (W)	Efficie ncy η (%)	Average η (%)	OLP P _{in} (W)	OLP I _{out12V} (fixed 5 V at 0.2 A) (A)
	0.04	4.99	0.000	37	12.15	0.000	107					
	0.09	4.61	0.006	71	13.03	0.000	47	0.03	32.28		59.30	3.93
	14.72	5.06	0.060	17	11.90	1.000	44	12.20	82.88			
85 V AC/60 Hz	12.53	5.06	0.050	16	11.89	0.853	39	10.39	82.93			
	25.00	5.07	0.100	21	11.87	1.705	60	20.74	82.98	02.22		
	37.82	5.08	0.150	26	11.85	2.559	78	31.08	82.17	82.33		
	50.98	5.08	0.200	30	11.84	3.412	93	41.41	81.23			
	0.05	4.96	0.000	37	12.15	0.000	58					
	0.09	4.60	0.006	80	13.06	0.000	53	0.03	30.52			
	14.60	5.05	0.060	17	11.91	1.000	41	12.21	83.65			
115 V AC/60 Hz	12.45	5.06	0.050	16	11.90	0.853	38	10.40	83.53		66.70	4.59
112	24.58	5.06	0.100	20	11.89	1.705	58	20.77	84.50	04.02		
	37.06	5.07	0.150	25	11.85	2.559	73	31.09	83.89	84.02		
	49.27	5.07	0.200	26	11.86	3.412		41.46	84.15			
	0.08	4.95	0.000	37	12.17	0.000	63				75.00	5.29
	0.13	4.52	0.006	81	13.25	0.000	53	0.03	21.30			
	14.66	5.04	0.060	16	11.94	1.000	41	12.24	83.49			
230 V AC/50 Hz	12.54	5.05	0.050	16	11.93	0.853	39	10.42	83.09			
112	24.36	5.05	0.100	19	11.91	1.705	58	20.81	85.41	05.00		
	36.49	5.06	0.150	21	11.88	2.559	71	31.15	85.37	85.02		
	48.20	5.06	0.200	22	11.88	3.412	71	41.54	86.19			
	0.09	4.95	0.000	40	12.16	0.000	66					
	0.14	4.51	0.006	83	13.26	0.000	56	0.03	19.37			5.49
	14.77	5.04	0.060	17	11.94	1.000	41	12.24	82.89			
265 V AC/50 Hz	12.62	5.05	0.050	16	11.93	0.853	39	10.42	82.57		76.70	
112	24.42	5.05	0.100	21	11.91	1.705	61	20.81	85.24	04.04		
	36.50	5.06	0.150	21	11.89	2.559	71	31.17	85.40	84.84		
	48.25	5.06	0.200	21	11.89	3.412	68	41.56	86.14			
	0.11	4.95	0.000	42	12.17	0.000	68					
	0.16	4.50	0.006	90	13.28	0.000	57	0.03	16.87		78.90	
	14.87	5.04	0.060	16	11.94	1.000	41	12.24	82.33			
300 V AC/50 Hz	12.73	5.04	0.050	16	11.93	0.853	38	10.42	81.87			5.67
114	24.53	5.05	0.100	20	11.92	1.705	58	20.82	84.89	04 52		
	36.58	5.06	0.150	27	11.89	2.559	70	31.19	85.25	84.52		
	48.32	5.06	0.200	22	11.89	3.412	66	41.58	86.05			

Minimum load condition : 5 V at 6 mA

Typical load condition : 5 V at 60 mA and 12 V at 1 A

Maximum load condition : 5 V at 200 mA and 12 V at 3.41 A

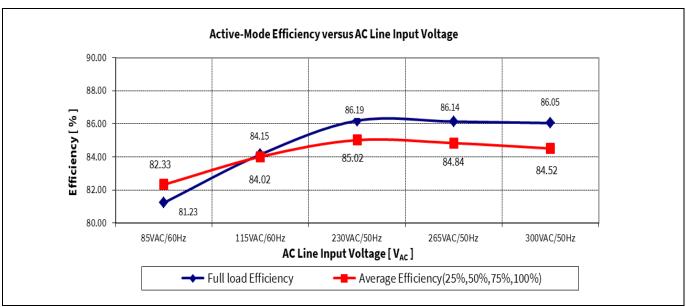
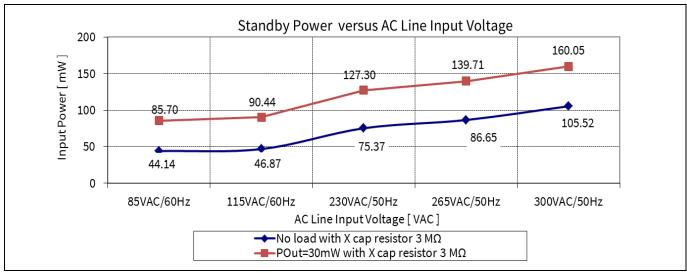



Figure 6 Efficiency vs AC-line input voltage

10.2 Standby power

Standby power at no-load and 30 mW load vs AC-line input voltage (measured by Figure 7 Yokogawa WT210 power meter - integration mode)

Line regulation 10.3

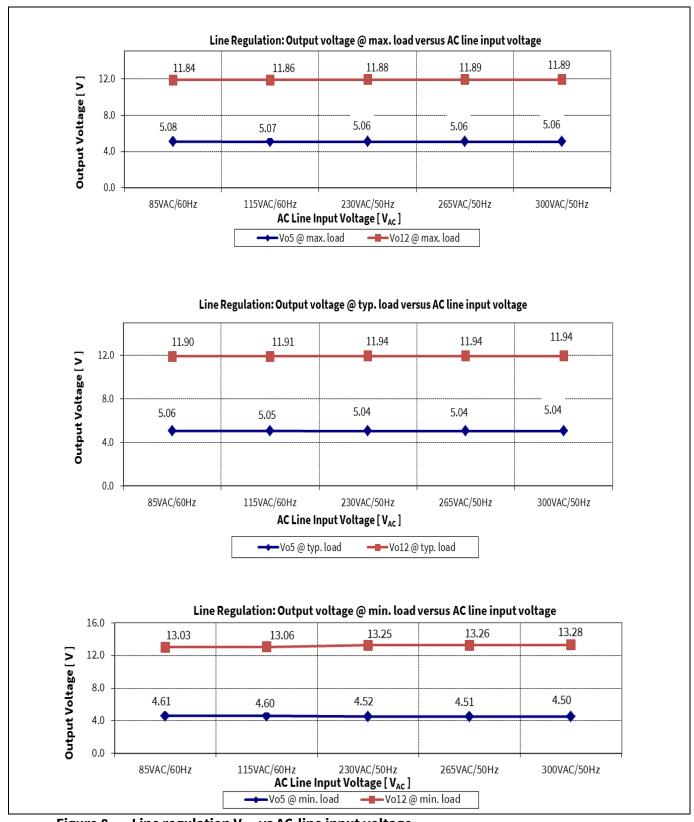


Figure 8 Line regulation Vout vs AC-line input voltage

10.4 Load regulation

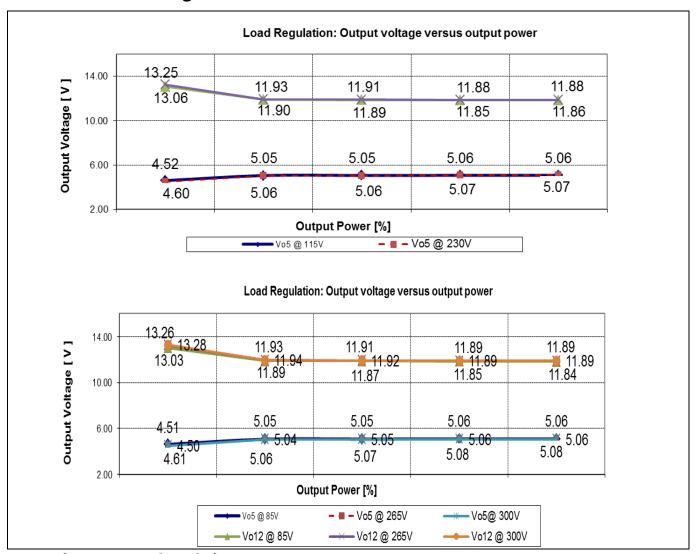


Figure 9 Load regulation Vout vs output power

10.5 Maximum input power

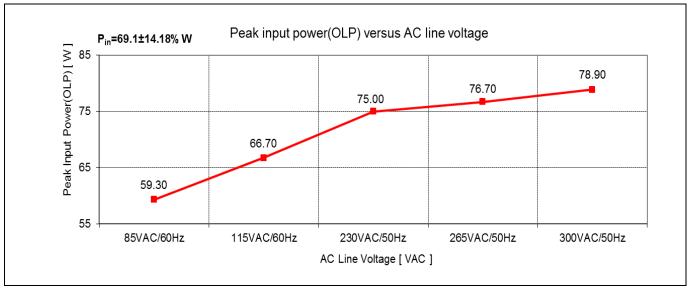
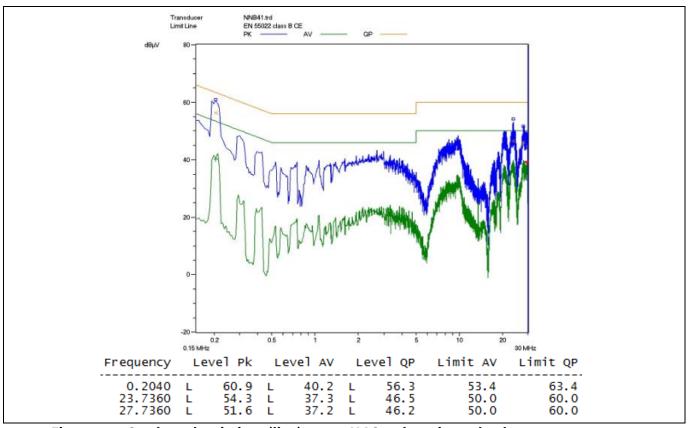


Figure 10 Maximum input power (before over-load protection) vs AC-line input voltage

10.6 ESD immunity (EN 61000-4-2)

Pass EN 61000-4-2 special level (±10 kV for both contact and air discharge).

10.7 Surge immunity (EN 61000-4-5)


Pass EN 61000-4-5 installation class 4 (±2 kV for line-to-line and ±4 kV for line-to-earth).¹

10.8 Conducted emissions (EN 55022 class B)

The conducted EMI was measured by Schaffner (SMR4503) and followed the test standard of EN 55022 (CISPR 22) class B. The demo board was set up at maximum load (42 W) with input voltage of 115 V AC and 230 V AC.

¹ PCB spark-gap distance needs to reduce to 0.5 mm.

Conducted emissions (line) at 115 V AC and maximum load Figure 11

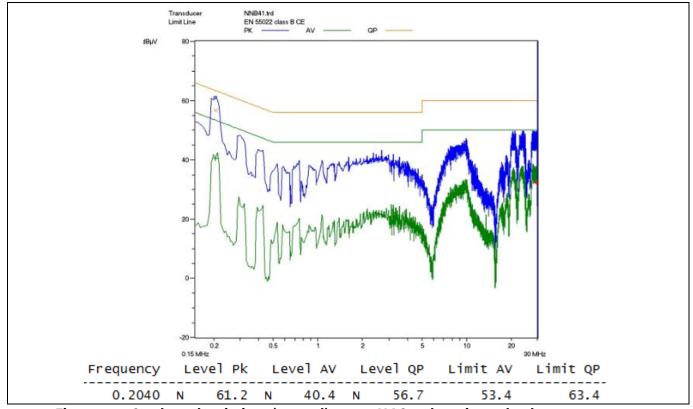


Figure 12 Conducted emissions (neutral) at 115 VAC and maximum load

Pass conducted emissions EN 55022 (CISPR 22) class B with 6 dB margin for quasi peak measurement at lowline (115 V AC).

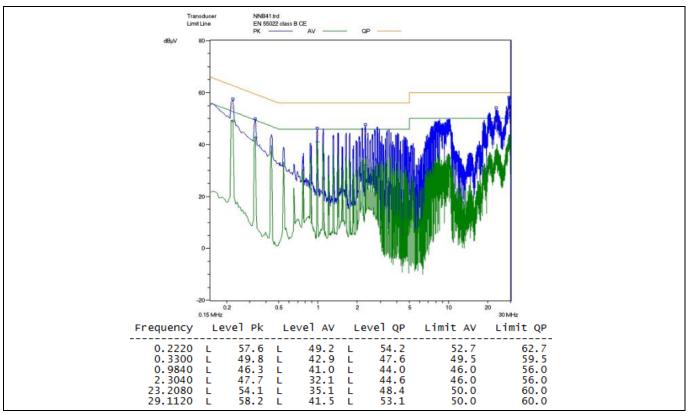


Figure 13 Conducted emissions (line) at 230 V AC and maximum load

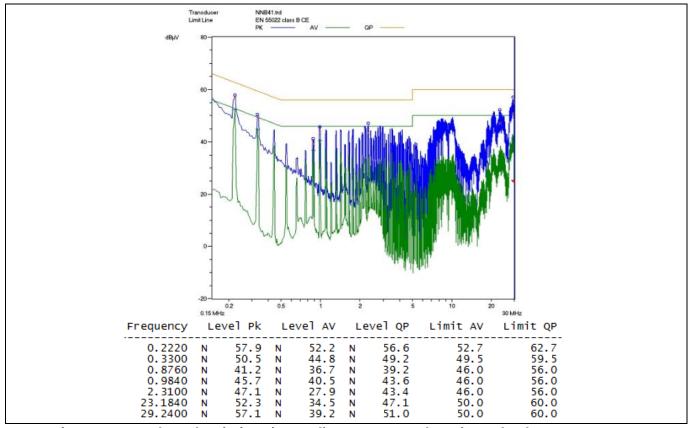
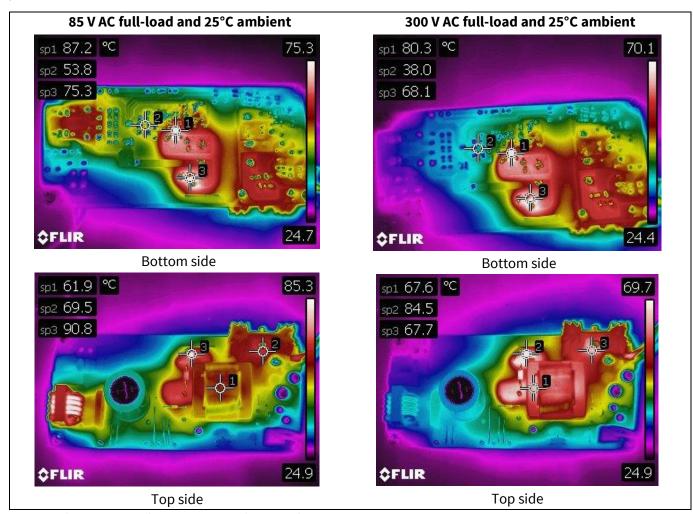


Figure 14 Conducted emissions (neutral) at 230 V AC and maximum load

Pass conducted emissions EN 55022 (CISPR 22) class B with 6 dB margin for quasi peak measurement at high-line (230 V AC).



10.9 Thermal measurement

The thermal test of the open-frame demo board was done using an infrared thermography camera (FLIR-T62101) at an ambient temperature of 25°C. The measurements were taken after one hour running at full-load.

Table 5 Hottest temperature of demo board

No.	Major component	85 V AC (°C)	300 V AC (°C)	
1	IC11 (ICE5QR0680AG)	87.2	80.3	
2	R14 (CS resistor)	53.8	38	
3	TR1 (transformer)	61.9	67.6	
4	BR1 (bridge diode)	62.9	36.9	
5	R11 (clamper)	90.8	84.5	
6	L11 (choke)	92.0	36.5	
7	D21 (secondary diode)	69.5	67.7	
8	D22 (secondary diode)	50.8	50.5	
9	Ambient	25.0	25.0	

Infrared thermal image of DEMO_5QR0680AG_42W1

Waveforms and scope plots 11

All waveforms and scope plots were recorded with a TELEDYNELECROY 606Zi oscilloscope.

Start-up at low/high AC-line input voltage with maximum load 11.1

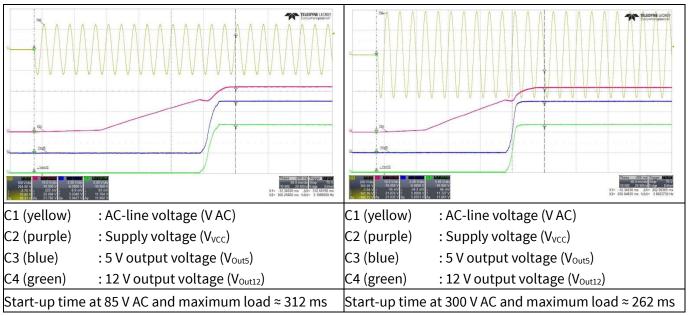


Figure 16 Start-up

11.2 **Soft-start**

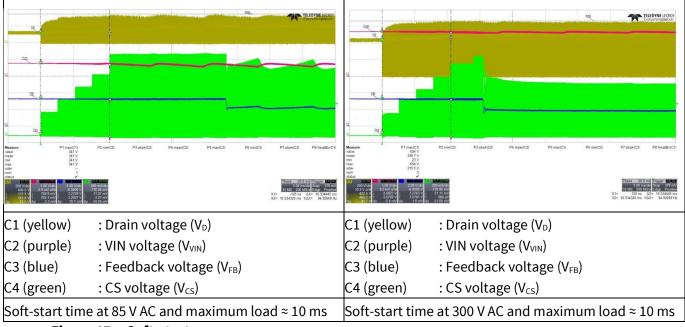
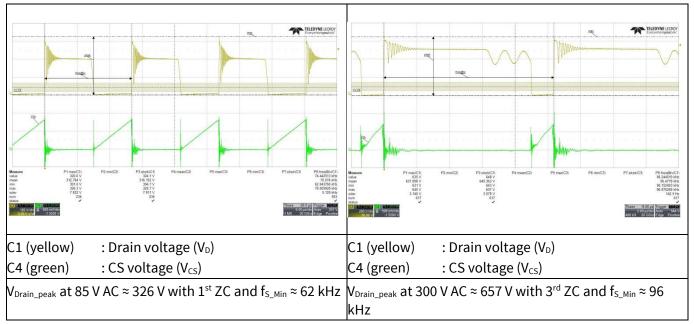



Figure 17 Soft-start

Drain and CS voltage at maximum load 11.3

Drain and CS voltage at maximum load Figure 18

Zero crossing point during normal operation 11.4

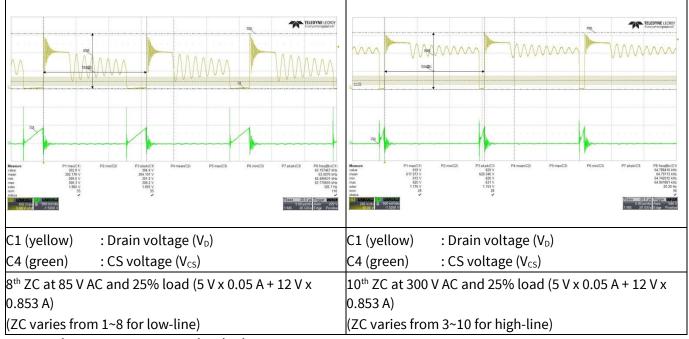


Figure 19 Zero Crossing (ZC)

11.5 Load transient response (dynamic load from 10% to 100%)

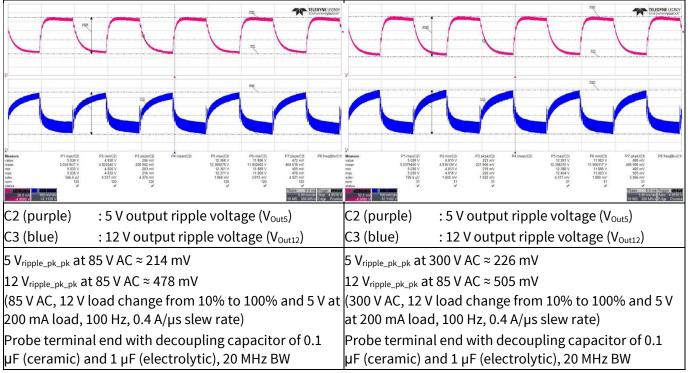


Figure 20 Load transient response

11.6 Output ripple voltage at maximum load

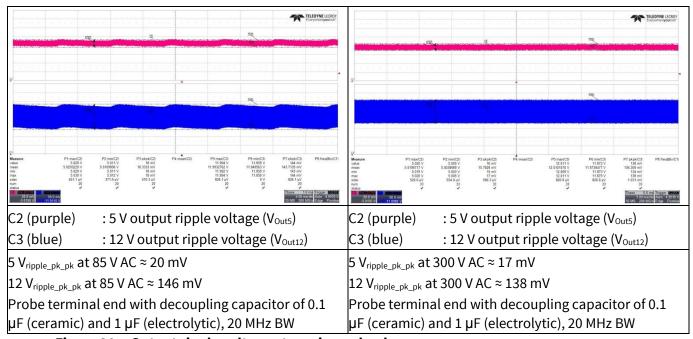
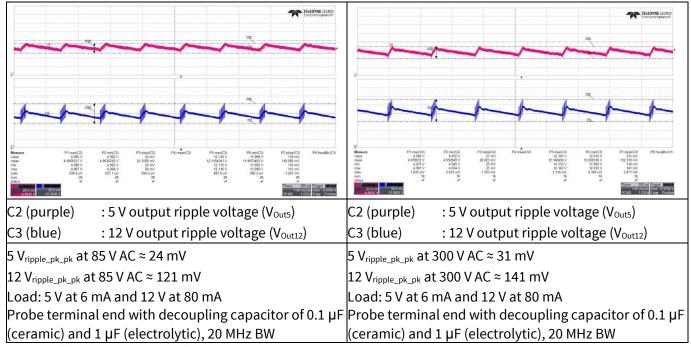
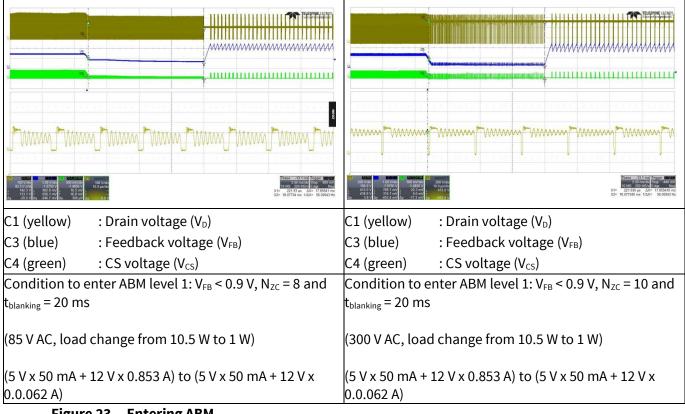



Figure 21 Output ripple voltage at maximum load



11.7 Output ripple voltage at ABM 1 W load

Output ripple voltage at ABM 1 W load Figure 22

Entering ABM 11.8

Entering ABM Figure 23

11.9 During ABM

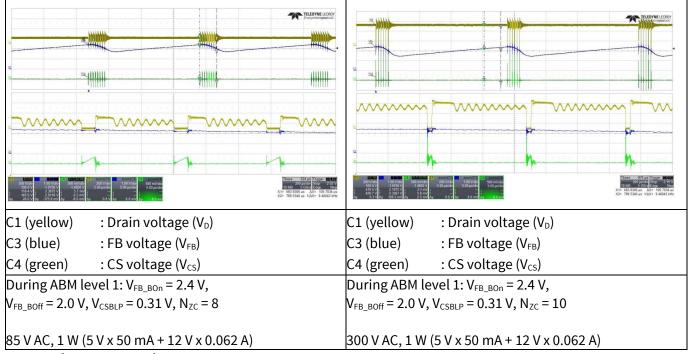


Figure 24 During ABM

11.10 Leaving ABM

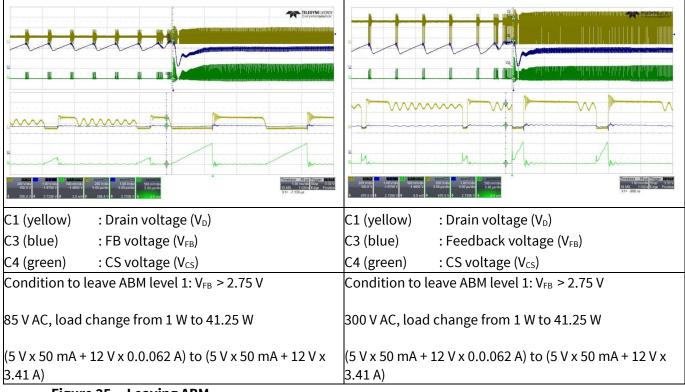


Figure 25 Leaving ABM

11.11 Line OVP (non-switch auto restart)

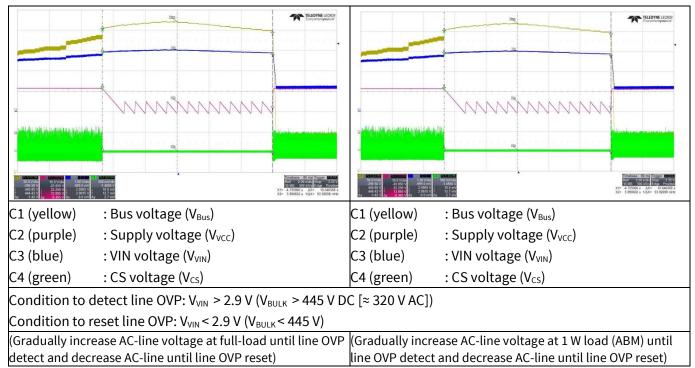


Figure 26 Line OVP

11.12 Brownout protection (non-switch auto restart)

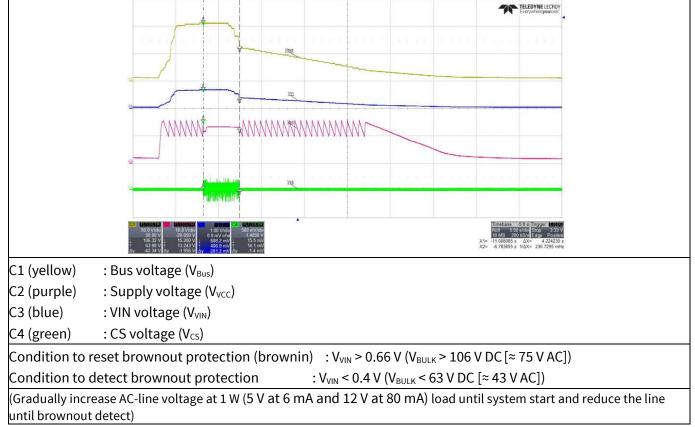
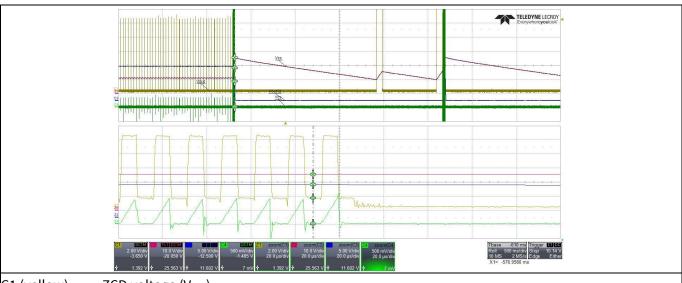
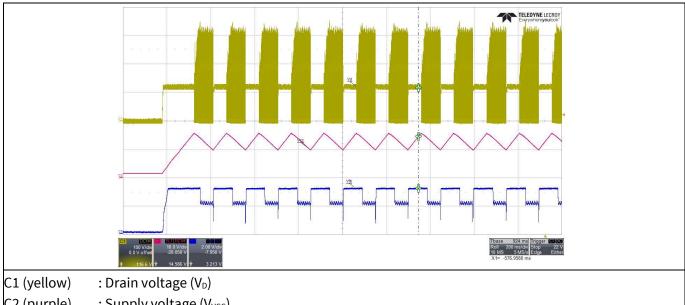



Figure 27 Brownout protection

11.13 Vcc OVP (odd-skip auto restart)

: ZCD voltage (V_{ZCD}) C1 (yellow) C2 (purple) : Supply voltage (V_{VCC}) C3 (blue) : 12 V output voltage (V₀₁₂)

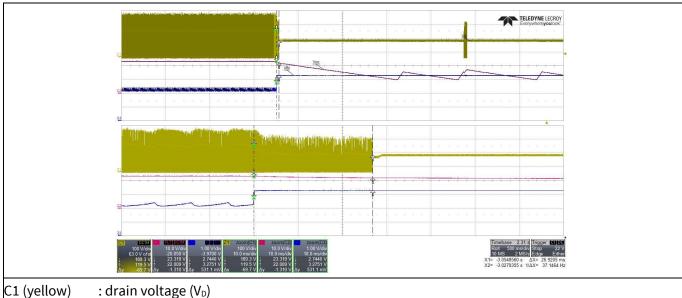

C4 (green) : CS voltage (V_{CS})

Condition to enter V_{VCC} OVP: V_{VCC} > 25.5 V

(85 V AC, remove R13 and load change from no-load to full-load)

Figure 28 V_{cc} OVP

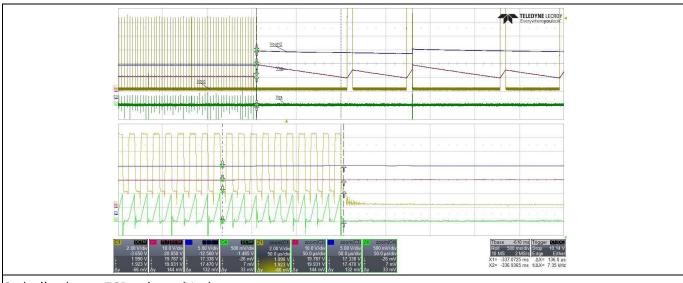
V_{cc} under-voltage protection (auto restart) 11.14


C2 (purple) : Supply voltage (V_{VCC}) : Feedback voltage (V_{FB}) C3 (blue)

Condition to enter V CC under-voltage protection: V_{cc} < 10 V (Remove R12 A and power on the system with full-load at 85 V AC)

Figure 29 V_{cc} under-voltage protection

Over-load protection (odd-skip auto restart) 11.15


C2 (purple) : supply voltage (V_{VCC}) C3 (blue) : FB voltage (V_{FB})

Condition to enter over-load protection: V_{FB} > 2.75 V and lasts for 30 ms blanking time

(12 V output load change from full-load to short at 85 V AC)

Figure 30 Over-load protection

Output OVP (odd-skip auto restart) 11.16

C1 (yellow) : ZCD voltage (V_{ZCD}) C2 (purple) : Supply voltage (V_{VCC}) C3 (blue) : 12 V output voltage (V₀₁₂)

C4 (green) : CS voltage (V_{CS})

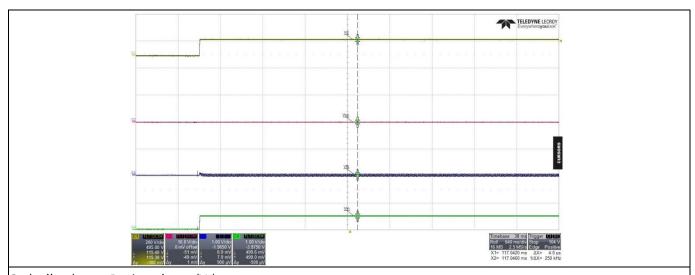

Condition to enter output OVP: V_{O12} > V (V_{ZCD} > 1.9 V) (85 V AC, short R26 during system operation at no-load)

Figure 31 Output OVP

Waveforms and scope plots

Vcc short-to-GND protection 11.17

C1 (yellow) : Drain voltage (V_D) C2 (purple) : V CC voltage (V_{VCC}) C3 (blue) : Feedback voltage (V_{FB}) C4 (green) : VIN voltage (V_{VIN})

Condition to enter V_{CC} short-to-GND: if $V_{CC} < V_{VCC_SCP} \rightarrow I_{VCC} = I_{VCC_Charge1}$

(Short V_{cc} pin to GND by multimeter and measure the current, I_{vcc} ≈ 280 µA and input power is ≈ 50 mW at 85 V AC and full-load)

Figure 32 V_{cc} short-to-GND protection

References

12 References

- [1] ICE5QRxxxxAx datasheet, Infineon Technologies AG
- AN-201609 PL83 026-Fifth-Generation QR Design Guide
- [3] Calculation Tool QRt CoolSET™ Generation 5

Revision history

Major changes since the last revision

Page or reference	Description of change
	First release

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-05-19
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AN_201702_PL83_007

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.