ST17H30Q 15W SoC for Wireless Power Transmitter with Built-in Bluetooth-LE

DS-ST17H30Q-E15

Keyword:

Features; Package; Pin layout; Memory; MCU; Working mode; Wakeup source; RF Transceiver; Baseband; Clock; Timers; Interrupt; Interface; QDEC; ADC; PWM; Electrical specification; Application

Brief:

This datasheet is dedicated for Lenze Wireless Power Transmitter, supported WPC1.2.4 Certificate, low cost BLE+2.4G dual mode SoC ST17H30Q. In this datasheet, key features, working modes, main modules, electrical specification and application of the ST17H30 are introduced.

Published by

Lenze Technology

East 7th Floor, Ching Po Building, Special Zone Press Group, NO.6008 Shennan Road, Futian District Shenzhen

© Lenze Technology All Right Reserved Legal Disclaimer

Lenze Technology reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lenze Technology disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Lenze Technology does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling Lenze Technology products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Lenze Technology for any damages arising or resulting from such use or sale.

Information:

For further information on the technology, product and business term, please contact Lenze Technology Company.

For sales or technical support, please send email to the address of:

billy@Lenzetech.com

info@Lenzetech.com

Revision History

Version	Major Changes	Date	Author	
1.0	Initial release	2015/4	S.G.J., Y.C.Q, F.F., L.Y., Cynthia	
1.1.0	Updated package dimension figure (Figure 1-2 in section 1.5), and section 1.2.2~1.2.3, 12.3~12.4	2015/6	X.S.J., L.Y., Cynthia	
1.2.0	 Added ordering information, package dimension, pin layout, GPIO lookup tables, pull-up/pull-down resistor and schematic for SOP16 package; Updated GP4&GP5 pin multiplexed function (I2C) for QFN24 package. 		S.G.J., L.X., H.Z.F., X.S.J., L.Y., Cynthia	
1.3.0	Added IO drive strength information	2015/7	L.Y., Cynthia	
1.4.0	Added TSSOP16 package information	2015/8	X.S.J., L.Y., Cynthia	
1.5.0	Deleted IR mode	2015/10	L.Y., Cynthia	
1.6.0	Deleted SOP16 package	2015/12	L.Y., Cynthia	
1.7.0	Updated connection relationship between GPIO and related modules.	2016/2	S.G.J., Cynthia	
1.8.0	Added eSOP8 package information; Added reference design for ST17H30QES16.	2016/3	X.X., X.S.J., L.X., Cynthia	
1.9.0	Updated reference design for ST17H30QET24, ST17H30QES16 and ST17H30QEP8	2016/3	H.Z.F., L.X., Cynthia	
2.0.0	Updated DC characteristics and ordering information.	2016/7	L.J.R., X.S.J., Cynthia	
2.1.0	Updated package dimension for the ST17H30QES16	2016/7	X.S.J., Cynthia	
2.2.0	Updated register configuration to	2016/10	Z.J.Q., Cynthia	

Version	Major Changes	Date	Author
	select V _{GP23} or 1/3* V _{GP23} as ADC input: digital register 0x2c[2:0], and analog register afe3V_reg02<3>.		
2.3.0	Updated WPC1.2. supported	2016/11	C.K.X., Cynthia
2.4.0	Updated 3.3V analog register table (3v_reg12 ~ 3v_reg45)	2016/12	C.K.X., Cynthia
2.5.0	.5.0 Official version for ST17H30QET24		Cynthia
2.6.0	Updated WPC1.2.3 supported	2017/5	Billy
2.7.0	Updated WPC1.2.4 supported, updated EPP(MP-A11) supported	2018/3	Billy

1 Table of contents

1	Overvie	W	10
	1.1 Bl	ock diagram	10
	1.2 Ke	y features	11
	1.2.1	General features	11
	1.2.2	RF Features	12
	1.2.3	Features of power management module	12
	1.3 Ty	pical application	13
	1.4 Or	dering information	13
	1.5 Pa	ckage	13
	1.6 Pi	n layout	15
	1.7 Le	nze SDK	17
2	Memor	y	17
3	MCU .		18
	3.1 W	orking modes	18
	3.1.1	Active mode	19
	3.1.2	Idle mode	19
	3.1.3	Power-saving mode	19
	3.1.3	.1 Brief introduction	19
	3.1.3	.2 Register configuration of power-saving mode	. 20
	3.1.3	•	
		3.1.3.3.1 Wakeup source – GPIO	
		3.1.3.3.2 Wakeup source – QDEC	
		3.1.3.3.3 Wakeup source – 32K timer	
	3.1.3	3.1.3.3.4 Wakeup source – pad	
		.4 Transition sequence	
4		Transceiver	
4			
		ock diagram	
		nction description	
		seband	
	4.3.1	Packet format	28
	4.3.2	RSSI	
5	Clock		28

	5.1	Syste	m clock	29
	5.1.1	Sy	stem clock sources	29
	5.1.2	F۲	IS select	30
	5.1.3	HS	S divider clock	30
	5.2	Mod	ule clock	30
	5.2.1	SA	AR ADC clock	30
	5.3	Regis	ter table	30
6	Time	rs		32
	6.1	Time	r0~Timer2	32
	6.1.1	Re	egister table	32
	6.1.2	Μ	ode0 (System Clock Mode)	34
	6.1.3	М	ode1 (GPIO Trigger Mode)	35
	6.1.4	М	ode2 (GPIO Pulse Width Mode)	36
	6.1.5	М	ode3 (Tick Mode)	37
	6.1.6	W	'atchdog	37
	6.2	32K L	TIMER	38
	6.3	Syste	m timer	39
7	Interr	rupt S	System	40
	7.1	Inter	rupt structure	40
	7.2	Regis	ter configuration	40
	7.2.1	Er	nable/Mask interrupt sources	41
	7.2.2	In	terrupt mode and priority	41
	7.2.3	In	terrupt source flag	42
8	Interf	face		42
	8.1	GPIO		42
	8.1.1	Ba	asic configuration	43
		1.1.1	Multiplexed functions	
		1.1.2	Drive strength	
	8.1.2		onnection relationship between GPIO and related modules	
	8.2	I2C		49
	8.2.1	Pi	n configuration	49
	8.2.2	Le	enze I2C communication protocol	49
	8.2.3	Re	egister table	50

8.2.4 12	2C Slave mode	51
8.2.4.1	DMA mode	52
8.2.4.2	Mapping mode	53
	Command analysis mode	
	up/Pull-down resistor	
-	re Decoder	
•	t pin selection	
	mon mode and double accuracy mode	
9.3 Read	d real time counting value	58
	C interrupt	
9.5 QDE	C reset	59
	er configuration	
9.7 Regi	ster table	60
10 SAR ADC.		61
10.1 Regist	ter table	61
10.2 SAR A	DC clock	62
10.3 Select	t ADC range, resolution and sampling time	62
	t input mode and channel	
10.5 ADC s	tart	63
10.6 ADC s	tatus	63
10.7 ADC d	lata	64
11 PWM		64
11.1 Regist	ter table	64
11.2 Enabl	e PWM	66
11.3 Set P\	WM clock	66
11.4 PWM	waveform, polarity and output inversion	66
11.4.1 P	WM waveform	67
11.4.2 lr	nvert PWM output	67
11.4.3 P	olarity for signal frame	67
11.5 PWM	mode	68
11.5.1 S	elect PWM mode	68
11.5.2 C	ontinuous mode	68
11.5.3 C	ounting mode	69
11.6 PWM	interrupt	69
12 Key Electr	ical Specifications	69
12.1 Absol	ute maximum ratings	69

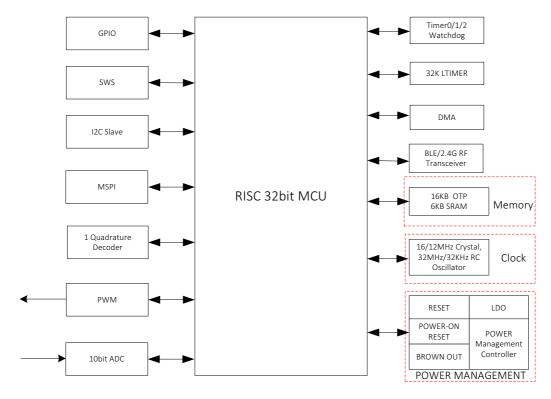
12.2	Rec	Recommended operating condition70					
12.3	DC	characteristics	70				
12.4	AC	characteristics	71				
13 Ap	plica	tion	75				
13.1	Арр	plication example for the ST17H30QET24	75				
13.	1.1	Schematic	75				
13.	1.2	Layout	77				
13.	1.3	BOM (Bill of Material)	77				

2 Table of Figures

Figure 1- 1	Block diagram of the system	11
Figure 1-2	Package dimension for the ST17H30QET24 (Unit: mm)	14
Figure 1-3	Pin assignment for the ST17H30QET24	15
Figure 2-1	Physical memory map	17
Figure 2-2	MCU memory map	
Figure 3-1	Block diagram	
Figure 3-2	Transition chart of working modes	
Figure 3-3	Wakeup source	25
Figure 4-1	Block diagram of RF transceiver	
Figure 5-1	Block diagram of system clock	29
Figure 8-1	Logic relationship between GPIO and related modules	47
Figure 8-2	I2C timing chart	50
Figure 8-3	I2C slave address	52
Figure 8-4	Read format in I2C DMA mode	
Figure 8-5	Write format in I2C DMA mode	53
Figure 8-6	Read format in I2C Mapping mode	53
Figure 8-7	Write format in I2C Mapping mode	53
Figure 9-1	Common mode	
Figure 9-2	Double accuracy mode	58
	Read real time counting value	
Figure 9-4	Shuttle mode	60
Figure 11-1	. PWM output waveform chart	68
Figure 11- 2	Continuous mode	68
Figure 11-3	Counting mode	69
Figure 13-1	Schematic for the ST17H30QET24	76
Figure 13- 2	Layout for the ST17H30QET24	77

3 Table of Tables

Table 1- 1	Ordering information of the ST17H30Q13
Table 1- 2	Pin functions for the ST17H30QET2415
Table 3-1	Registers in digital core20
Table 3- 2	3.3V analog registers (afe3V_reg05 ~ afe3V_reg06) (bit) 20
Table 3- 3	3.3V analog registers (3v_reg12 ~ 3v_reg45) 22
Table 3- 4	Register configuration for reset, wakeup and power down enabling26
Table 4- 1	Packet Format
Table 5- 1	Register table for clock 30
Table 6- 1	Register configuration for Timer0~Timer2 32
Table 6- 2	3.3V analog register table for LTIMER
Table 6- 3	Register table for System Timer 40
Table 7-1	Register table for Interrupt system 40
Table 8- 1	GPIO lookup table 1 for the ST17H30QET2443
Table 8- 2	IO drive strength for ST17H30QET2445
Table 8- 3	GPIO lookup table 2 for the ST17H30QET24
Table 8- 4	I2C pin configuration
Table 8- 5	Register table for I2C 50
Table 8- 6	3.3V analog registers related to Pull-up/Pull-down resistor
Table 9- 1	Input pin selection
Table 9- 2	Register table for QDEC
Table 10- 1	Register table for SAR ADC61
Table 11- 1	Register table for PWM64
Table 12- 1	Absolute Maximum Ratings69
Table 12- 2	Recommended operation condition70
Table 12- 3	DC characteristics
Table 12- 4	AC Characteristics
Table 13- 1	BOM table for the ST17H30QET24



1 Overview

The ST17H30Q is Lenze-developed wireless power transmitter, support WPC1.2.4 standard, single coil quick charge transmission, compliant all kinds of receiving equipment of international wireless charging standard, such as smart phones, smart watches, anti-corrosion and IoT products, power input support QC2.0/QC3.0 adapter. ultra-low cost BLE and 2.4G dual mode SoC solution which is fully standard compliant and allows easy connectivity with Bluetooth Smart Ready mobile phones, tablets, laptops. It's completely RoHS-compliant and 100% lead (Pb)-free.

1.1 Block diagram

The ST17H30Q is designed to offer ultra-low cost, high efficiency wireless power transmitter, low power Bluetooth Smart application capabilities, which integrates powerful 32-bit MCU, advanced BLE/2.4G Radio, 16KB on-chip OTP, 6KB on-chip SRAM, a 10bit ADC, a quadrature decoder (QDEC), up to four-channel PWM, flexible I/O interfaces, and nearly all of the peripheral blocks needed for Bluetooth Low Energy applications development.

The system's block diagram is as shown in Figure 1-1:

DS-ST17H30Q-E15

Figure 1-1 Block diagram of the system

Based on the ST17H30Q with high-volume-assembly and high integration, few external components are needed to satisfy customers' ultra-low cost requirement.

1.2 Key features

1.2.1 General features

General features are as follows:

- 1) Compatible with WPC1.2/WPC1.2.3/WPC1.2.4 standard
- 2) Metal object detection(FOD)
- Compatible with 15W/10W/5W(including Apple 7.5W fast charging), Automatic detect to set output power
- 4) Compatible with Apple Watch charge Standard (350mA charging current)
- 5) Conversion efficiency 85%
- 6) Detection distance: 0~10mm
- 7) Modulation method: ASK/FSK2-Way
- 8) Embed 32-bit ARM cortex M3 high performance MCU with clock up to 48MHz.
- 9) Program memory: 16KB on-chip OTP.
- 10) Data memory: 6KB on-chip SRAM.
- 11) 16/12MHz Crystal and 32KHz/32MHz embedded RC oscillator.
- 12) Up to 14 GPIOs depending on package option, with configurable internal pull-up or pull-down resistors.
- 13) Debug interface: SWS (Single Wire Slave).
- 14) Supports MSPI and I2C Slave interface.
- 15) Embeds a SAR ADC: Up to 10bit resolution and 4 input channels.
- 16) Embeds one quadrature decoder (QDEC).
- 17) Supports up to four-channel PWM output.
- 18) Embeds three general 32-bit timers Timer0~Timer2.
 - ♦ Timer0~Timer2 are available in active mode
 - ♦ Timer0~Timer1 supports four modes

DS-ST17H30Q-E15

- ♦ Generally Timer2 is programmable as watchdog
- 19) A low-frequency 32K timer LTIMER available in suspend mode or deep sleep mode.
- 20) Operating temperature: $-40^{\circ}C^{+85}C$ industrial temperature range.

1.2.2 RF Features

- RF features include:
- BLE/2.4GHz RF transceiver embedded, working in worldwide 2.4GHz ISM band.
- 2) Adaptive frequency hopping.
- 3) Bluetooth 4.0 Compliant, 1Mbps data rate mode.
- 4) Rx Sensitivity: -94dBm at 1Mbps mode.
- 5) Tx output power up to +6dBm.
- 6) Auto acknowledgement and retry.
- 7) Single-pin antenna interface.
- 8) RSSI monitoring.

1.2.3 Features of power management module

Features of power management module include:

- 1) Power supply of 1.9V~3.6V.
- 2) Embedded LDO.
- 3) Battery monitor: Embedded low battery detection.
- 4) Multiple stage power management to minimize power consumption.
- 5) Low power consumption:
 - ♦ Transmitter mode current: 15mA @ 0dBm power, 22mA @ max power
 - ♦ Receiver mode current: 12mA
 - ♦ Suspend mode current: 10uA
 - ♦ Deep sleep mode current: 0.7uA

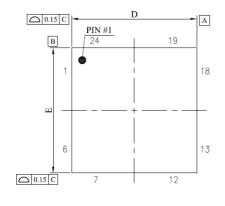
1.3 Typical application

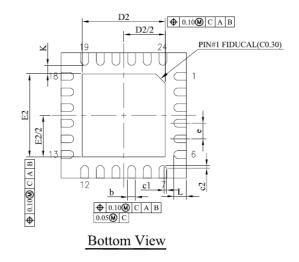
The ST17H30Q is typically used for BLE (Bluetooth Low Energy) applications.

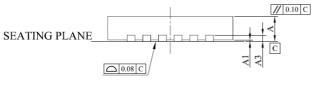
- ♦ Wireless Charger
- ♦ Beacon
- \diamond Find Me
- ♦ Selfie Shutter

1.4 Ordering information

Table 1-1Ordering information of the ST17H30Q


Product	Package Type	Temperature Range	Package Marking	Packing Method	Ordering Number	Minimum Order Quantity
	24-pin					
ST17H30Q	4X4mm	-40°C ∼+85°C	ST17H30QET24	TR	ST17H30QET24R	3000
	TQFN					


*Note: Packing method "TR" means tape and reel.


1.5 Package

Package dimension for the ST17H30QET24 is shown as Figure 1-2.

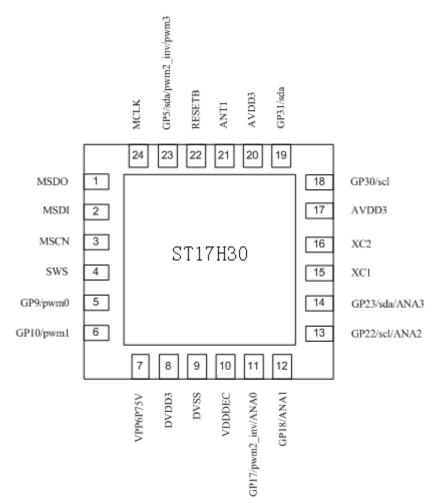
Top View

Side	View

SYMBOL	DIMENSION (MM)			DIMENSION (MIL)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
А	0.70	0.75	0.80	27.6	29.5	31.5
A1	0	0.02	0.05	0	0.8	2.0
A3		0.20REF			7.9REF	
b	0.18	0.25	0.30	7.1	9.8	11.8
D	3.90	4.00	4.10	153.5	157.5	161.4
D2	2.55	2.65	2.75	100.4	104.3	108.3
Е	3.90	4.00	4.10	153.5	157.5	161.4
E2	2.55	2.65	2.75	100.4	104.3	108.3
e		0.50BSC			19.7BSC	
К	0.20			7.9		
L	0.35	0.40	0.45	13.8	15.7	17.7
c 1		0.08			3.1	
c2		0.08			3.1	

NOTE:

DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
 REFER TO JEDEC STD.MO-220 WGGD-6
 DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.18 AND 0.30mm FROM TERMINAL TIP.


4. LEADFRAME THICKNESS IS 0.203MM (8 MIL).

5. DIMENSION"D"&"E" WILL INCLUDE ALL SIDE BURR INDUCED DURING ASSEMBLY.

Figure 1-2 Package dimension for the ST17H30QET24 (Unit: mm)

1.6 Pin layout

Pin assignment for the ST17H30QET24 is as shown in Figure 1-3:

Figure 1-3 Pin assignment for the ST17H30QET24

Functions of 24 pins for the ST17H30QET24 are described in Table 1-2:

	QFN24 4X4						
No.	Pin Name	Pin Type	Description				
1	MSDO	Digital I/O	Memory SPI data output/GPIO				
2	MSDI	Digital I/O	Memory SPI data input/GPIO				
3	MSCN	Digital I/O	Memory SPI chip-select(Active low)/GPIO				
4	sws	Digital I/O	single wire slave/GPIO				
5	GP9/pwm0 #	Digital I/O	GPIO9/PWM0 output				

	QFN24 4X4					
No.	Pin Name	Pin Type	Description			
6	GP10/pwm1 #	Digital I/O	GPIO10/PWM1 output			
7	VPP6P75V	POWER	for OTP program 6.75V power supply			
8	DVDD3	PWR	3.3V IO supply			
9	DVSS	GND	Digital LDO ground			
10	VDDDEC	PWR	Digital LDO 1.8V output			
11	GP17/pwm2_inv/ANA0 *	Digital I/O	GPIO17/PWM2 inverting output/Analog input 0 for SAR ADC			
12	GP18/ANA1 *	Digital I/O	GPIO18/Analog input 1 for SAR ADC			
13	GP22/scl/ANA2 *	Digital I/O	GPIO22/I2C_SCL/Analog input 2 for SAR ADC			
14	GP23/sda/ANA3 *	Digital I/O	GPIO23/I2C_SDA/Analog input 3 for SAR ADC			
15	XC1	Analog I/O	16MHz crystal input+			
16	XC2	Analog I/O	16MHz crystal input-			
17	AVDD3	PWR	Analog 3.3V supply			
18	GP30/scl	Digital I/O	GPIO30/I2C_SCL			
19	GP31/sda *	Digital I/O	GPIO31/I2C_SDA			
20	AVDD3	PWR	RF 3.3V supply			
21	ANT1	Analog I/O	RF antenna			
22	RESETB	Digital I	Power on reset, active low			
23	GP5/sda/pwm2_inv/ pwm3 #	Digital I/O	GPIO5/I2C_SDA (not recommended)/PWM2 inverting output/PWM3 output			
24	MCLK	Digital I/O	Memory SPI clock/GPIO			

*Note:

(1) Pins with bold typeface can be used as GPIOS. Please refer to **Section 8.1** for details.

(2) The pins marked with an asterisk support configurable internal $1M\Omega/10K\Omega$ pull-up resistor or $100K\Omega$ pull-down resistor which are disabled by default. The pins marked with a pound sign support internal $100K\Omega$ pull-down resistor which is disabled by default. Please refer to **Section 8.4** for details about pull-up/pull-down resistor. (3) The I2C interface only supports Slave mode.

(4) Pin drive strength: All the GPIO pins support drive strength of 4mA or 0.7mA (4mADS-ST17H30Q-E1516Ver2.4.0

when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: MCLK, MSDO, MSDI and MSCN support drive strength of 4mA or 2mA (4mA when "DS"=1, 2mA when "DS"=0); SWS supports drive strength of 8mA or 4mA (8mA when "DS"=1, 4mA when "DS"=0). "DS" configuration will take effect when the pin is used as output. Please refer to **Section 8.1 GPIO** for corresponding "DS" register address and the default setting.

1.7 Lenze SDK

A full featured SDK is provided with the chip for BLE applications. The customer can easily develop his own BLE applications by employing the firmware, along with the system configuration data composed according to the specific hardware design.

2 Memory

The ST17H30Q embeds 6KB data memory (SRAM), and 16KB program memory (OTP).

SRAM/Register memory map is shown as follows:

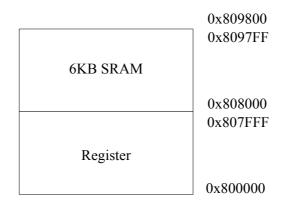


Figure 2-1 Physical memory map

Register address: from 0x800000 to 0x807FFF;

6KB SRAM address: from 0x808000 to 0x809800.

Both register and 6KB SRAM address can be accessed via I2C Slave and SWS interface.

OTP/External flash address mapping is configurable.

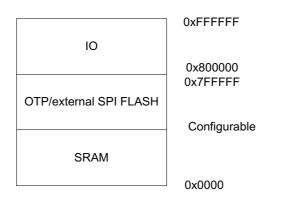


Figure 2-2 MCU memory map

External FLASH address can be accessed via MSPI interface.

Address space starting from 0x800000 can be accessed via debug interface.

3 MCU

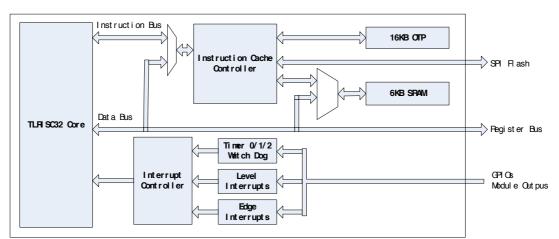


Figure 3-1 Block diagram

The ST17H30Q integrates a powerful 32-bit MCU developed by Lenze. The digital core is based on 32-bit RISC, and the length of instructions is 16 bits; four hardware breakpoints are supported.

3.1 Working modes

The ST17H30Q has four working modes: Active, Idle, Suspend and Deep Sleep. This section mainly gives the description of every working mode and mode transition.

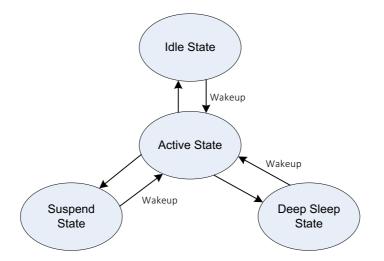


Figure 3-2 Transition chart of working modes

3.1.1 Active mode

In active mode, the MCU block is at working state, and the ST17H30Q can transmit or receive data via its embedded RF transceiver. The RF transceiver can also be powered down if no data transfer is needed.

3.1.2 Idle mode

In Idle mode, the MCU block stalls, and the RF transceiver can be at working state or be powered down. The time needed for the transition from Idle mode to Active mode is negligible.

3.1.3 Power-saving mode

3.1.3.1 Brief introduction

For the ST17H30Q, there are two kinds of power-saving modes: suspend mode and deep sleep mode. The two modes have similar transition sequences but different register settings. For 1.8V digital core, it's still provided with the working power by 1.8V LDO in suspend mode; while in deep sleep mode, the 1.8V LDO will be turned off, and the digital core is powered down.

In suspend mode, the RF transceiver is powered down, and the clock of the MCU block is stopped. It only takes about 400us for the ST17H30Q to enter the active mode from suspend mode.

While in deep sleep mode, both the RF transceiver and the MCU block are

```
DS-ST17H30Q-E15
```


powered down with only power management block being active. The transition time needed from deep sleep mode to active mode is 1ms, almost the same as power-up time.

3.1.3.2 Register configuration of power-saving mode

For the ST17H30Q, power-saving mode related registers are configurable via digital core and 3.3V analog registers.

Address	Mnemonic	Туре	Description	Reset value
Охбе	WAKEUPEN	R/W	 Wakeup enable [0]: enable i2c wakeup when transaction [1]: enable QDEC wakeup [2]: rsvd [3]: enable wakeup from gpio [4]: enable i2c wakeup when slave ID matched System resume control [5]: enable GPIO remote wakeup [6]: rsvd [7] sleep wakeup reset system enable 	00
0x6f	PWDNEN	W	 [0]: suspend enable [5]: rst all (act as power on reset) [6]: mcu low power mode [7]: stall mcu trig If bit[0] set 1, then system will go to suspend. Or only stall mcu 	

Table 3-1Registers in digital core

Address 0x6e serves to enable various wakeup sources from power-saving mode.

Please refer to **Section 3.1.3.3** Wakeup source for details.

Table 3- 2	3.3V analog registers	(afe3V_reg05 ~	afe3V_reg06) (bit)
------------	-----------------------	----------------	--------------------

Address(bit)	Mnemonic	Reset value	Description
afe3V_reg05<0>	32K_rc_pd	0	Power down 32KHz RC oscillator 1: Power down 32KHz RC oscillator
			0: Power up 32KHz RC oscillator

Address(bit)	Mnemonic	Reset value	Description
afe3V_reg05<1>	reserved	0	
afe3V_reg05<2>	32M_rc_pd	0	Power down of 32MHz RC oscillator 1: Power down 32MHz RC oscillator 0: Power up 32MHz RC oscillator
afe3V_reg05<3>	xtal_LDO_pd	0	Power down of 16MHz crystal oscillator 1: Power down 0: Power up
afe3V_reg05<4>	ldo_ana_pd	0	Power down of analog LDO 1: Power down 0: Power up
afe3V_reg05<5>	reserved	1	
afe3V_reg05<6>	reserved	1	
afe3V_reg05<7>	BBPLL_LDO_pd_3V	0	Power down baseband pll LDO 1: Power down 0: Power up
afe3V_reg06<0>	comp_pd	1	Power down SAR ADC 1: Power down 0: Power up
afe3V_reg06<1>	rx_lnaLDO_pd	1	Power down LNA LDO in RF transceiver 1: Power down 0: Power up
afe3V_reg06<2>	rx_anaLDO_pd	1	Power down analog LDO in RF transceiver 1: Power down 0: Power up
afe3V_reg06<3>	rx_rfLDO_pd	1	Power down RF LDO in RF transceiver 1: Power down 0: Power up
afe3V_reg06<4>	pll_BG_pd	1	Power down Bandgap in PLL 1: Power down 0: Power up
afe3V_reg06<5>	reserved		
afe3V_reg06<6>	pll_vco_ldo_pd	1	Power down VCO LDO 1: Power down 0: Power up
afe3V_reg06<7>	pll_cp_ldo_pd	1	Power down cp and prescaler anaog circuit ldo 1: Power down 0: power up

	Addr	Name	Description
" 10		huffor	this buffer will be reset when watch dog reset or
r12	0x0c	buffer	whole chip reset(address 0x6f write 0x20)
	00.1	h ff a m	this buffer will be reset when watch dog reset or
r13	0x0d	buffer	whole chip reset(address 0x6f write 0x20)
"1 4	0,40,5	buffer	this buffer will be reset when watch dog reset or
r14	0x0e	buller	whole chip reset(address 0x6f write 0x20)
r15	0x0f	32ktimer_cnt[7:0]	32ktimer cnt[0] = 1 means 4 cycles of 32k
r16	0x10	32ktimer_cnt[15:8]	
r17	0x11	32ktimer_cnt[23:16]	
-10	0x12[0]	32ktimer_cnt[24]	
r18	0x12[1]	32k timer enable	32k timer enable
	0,12[0,0]	برابر	[6:0]wakeup or power on delay for digital LDO is
r19	0x13[6:0]	r_dly	ready.
	0x13[7]	rsvd	
	0x14[2:0]	wd_v	32k watch dog value
	0x14[3]	wd_en	32k watch dog enable
r20			pad polarity, one bit control two pad wakeup
	0x14[7:4]	pad_pol[3:0]	polarity. pad_pol[4] control
			pad_wakeup_en[1:0].
	0x15[3:0]	xtl_quick	xtl quick settle 0xf means disable
			watch dog wake up source select[4]; dig wakeup
r21	0x15[5:4]	wd_wkup_src	source enable watch dog.[5],pad wakeup source
			enable watch dog
	0x15[7:6]	rsvd	
r22	0x16	pad_wakeup_en	[7:0]>p_gpio[24:17].[0]>p_gpio[17]
	0x17[2:0]	wakeup_en	[0]-> digital wakeup enable[1]>32k timer
	0/1/[2.0]	wakeup_en	wakeup enable,[2] pad wake up enable
	0x17[3]	32k timer reset	
r23	0x17[4]	rsvd	
	0x17[5]	32k timer clock select	0:32k osc, 1 16M xtl
	0x17[6]	rsvd	
	0x17[7]	rsvd	
	0x18[0]	pwdn_auto_en	auto pd 32k osc enable
	0x18[1]	rsvd	
	0x18[2]	pwdn_auto_en	auto pd 16m xtal enable
r24			auto pd ldo_ana,BBPLL_ldo,sar_adc,rx_lnaLDO,
	0x18[3]	pwdn_auto_en	rx_anan_ldo,rx_rfLDO,pll_bg,
			pll_vco_ldo,pll_cp_ldo
	0x18[4]	pwdn_en	power down sequence enable

Table 3- 3	3.3V analog registers (3v_reg12 ~ 3v_reg45)
------------	---

	Addr	Name	Description
	0x18[5]	pd_llkldo	pd low leakage ldo
	0x18[6]	pd_ldo_en	pd digital ldo enable
	0x18[7]	iso_en	isolation enable
r25	0x19	buffer	this buffer will be reset only at power on
r26	0x1a	buffer	this buffer will be reset only at power on
r27	0x1b	buffer	this buffer will be reset only at power on
r28	0x1c	buffer	this buffer will be reset only at power on
	0x1d~0x1f	rsvd	
	020	used such a	32k timer_cnt[7:0](1 cycle of 32k clock will
r32	0x20	read only	change the reslult)
r33	0x21	read only	32k timer_cnt[15:8]
r34	0x22	read only	32k timer_cnt[23:16]
	0x23[0]	rsvd	
	0x23[1]	w/r	write 1 to clean timer wakeup status.
	0x23[2]	w/r	write 1 to clean digital wakeup status
	0x23[3]	w/r	write 1 to clean pad wakeup status
r35	0x23[4]	wd_status	write 1 to clean watch dog status.
	0x23[5]	read only	rsvd
	0x23[6]	read only	32k timer_cnt[24]
	0		32k timer enable toggle signal, write 1 to enable
	0x23[7]	w/r	32k timer
	0x24[0]	trk32m manul en	
	0x24[1]	trk32m en	
r36	0x24[2]	trk32k manul en	
130	0x24[3]	trk32k en	
	0x24[4]	mode_12m	1, 12M xtal, 0: 16M xtal
	0x24[7:3]	rsvd	
r37	0x25	trk32m_m_cap	
r38	0x26[6:0]	trk32k_m_cap	
130	0x26[7]	rsvd	
r39	0x27	rsvd	
r40	0x28		
r41	0x29		
r42	0x2a		
	0x2b[2:0]	pad_wakeup en[10:8]	[0]->p_gpio[26],[1]->p_gpio[27],[2]->p_gpio[31]
r43	0x2b[3]	rsvd	
	0x2b[6:4]	pad_pol[6:4]	pad_pol[6:4]^pad_wakeup_en[10:8]
r44		32M rc cap value	32M calibration read only
r45		32k rc cap value	32k calibration read only

3.1.3.3 Wakeup source

3.1.3.3.1 Wakeup source – GPIO

This wakeup source can only wake up the system from suspend mode.

First, set the right polarity of IO via the "Polarity" register (0x584, 0x58c, 0x594, 0x59c, 0x5a4). Polarity 1 indicates corresponding IO is active low, while 0 indicates corresponding IO is active high.

Second, set the right mask via the "Irq" register (0x587, 0x58f, 0x597, 0x59f, 0x5a7). 1: enable this IO as wakeup source; 0: disable this IO.

Third, set both the digital core address 0x6e bit[3] and 3v_reg23 bit[0] to 1 so as to activate this mode.

Please refer to **Section 8.1** GPIO for details about polarity and mask registers of each GPIO.

3.1.3.3.2 Wakeup source – QDEC

This wakeup source can only wake up the system from suspend mode.

First, digital core address 0x6e[1] should be set to 1b'1.

Second, address 3V_reg23 bit[0] should be set to 1b'1.

Third, addresses afe3V_reg05<0> and 3V_reg24 [0] should be cleared to power up 32K RC clock, then write 0x64[7] and 0x65[0] to 1.

After this wakeup source is enabled, once there's wheel rolling, square waves output are generated and the system is wakened.

3.1.3.3.3 Wakeup source – 32K timer

This wakeup source is able to wake up the system from suspend mode or deep sleep mode.

Address 3V_reg23 bit[1] is the enabling bit for wakeup source from 32k timer.

3.1.3.3.4 Wakeup source – pad

This wakeup source is able to wake up the system from suspend mode or deep sleep mode.

3v_reg23[2] should be set to 1b'1 to enable pad wakeup source.

DS-ST17H30Q-E15

3v_reg22 and 3v_reg43[2:0] are enabling signal for pad wakeup sources: 3v_reg22 bit[7:0] -> [GP24~GP17]; 3v_reg43 bit[2:0] -> [GP31, GP27, GP26]. 1: enable this IO as wakeup source; 0: disable this IO.

Polarity is controlled by 3v_reg20[7:4] and 3v_reg43[6:4]: 3v_reg43[6] controls polarity of GP31, bit[5] controls polarity of GP27, bit[4] controls polarity of GP26; 3v_reg20 bit[4] controls polarity of GP17 and GP18, bit[5] controls polarity of GP19 and GP20, bit[6] controls polarity of GP21 and GP22, bit[7] controls polarity of GP23 and GP24. Polarity 1 indicates corresponding IO is active low, while 0 indicates corresponding IO is active high.

3.1.3.4 Transition sequence

First, enable the target wakeup source, and disable other wakeup sources.

NOTE: In deep sleep mode, the wakeup_dig (including wakeup source-QDEC and wakeup source-GPIO, shown as Figure 3-3) can't be selected as wakeup source; the effective wakeup source is 32K timer or pad wakeup source.

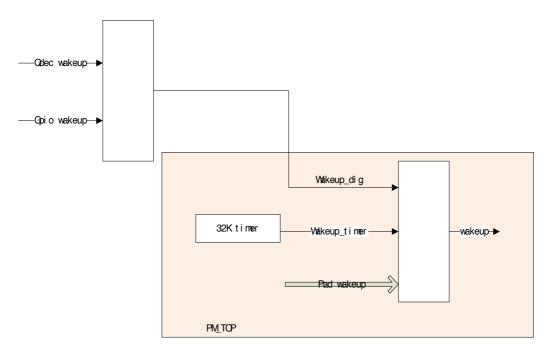


Figure 3-3 Wakeup source

Second, select right power-saving mode: deep sleep mode or suspend mode. If deep sleep mode is to be selected, r24 bit[7] and bit[5] should be set to 1; r24 bit[7]

DS-ST17H30Q-E15

and bit[5] should be cleared if suspend mode is to be selected.

Third, configure other enabling bits: set r23 bit[7] to 1; set r24 bits [3:0] to 1111, and also set r24 bit[6] to 1.

Fourth, Write data 0x81 to digital core address 0x6f to trigger the whole system. The system enters deep sleep mode or suspend mode (power-saving status depends on the setting of r24).

3.2 Reset

Except for power on reset, it is also feasible to carry out software reset for the whole chip or some modules. Setting address 0x6f[5] to 1b'1 is to reset the whole chip. Addresses 0x60~0x62 serve to reset individual modules: if some bit is set to logic "1", the corresponding module is reset.

Address	Mnemonic	Туре	Description	Reset Value
			Reset control, 1 for reset, 0 for clear	
			[0]: mcu	
			[1]: zb	
			[2]: rsvd	
0x60	RSTO	R/W	[3]: dma	00
			[4]: algm	
			[5]: sws	
			[6]: aif	
			[7]: rsvd	
			[0] rsvd	
		-1 R/W	[1]i2c	
	RST1		[2]rsvd	df
0x61			[3]pwm	
0,01	NJII	17,00	[4]rsvd	ui
			[5]rsvd	
			[6]mspi	
			[7]bbpll	
			[0]adc	
0x62	RST2	R/W	[1]algs	00
			[2]mcic	

Table 3-4 Register configuration for reset, wakeup and power down enabling

Address	Mnemonic	Туре	Description	Reset Value
			[3]mcic auto reset at suspend	
			[4]systimer	
			[5]rsvd	
			[6]rsvd	
			[7]rsvd	
			[0] suspend enable	
			[5]:rst all (act as power on reset)	
065			[6]:mcu low power mode	
0x6f	PWDNEN	W	[7]: stall mcu trig If bit[0] set 1, then	
			system will go to suspend. Or only	
			stall mcu	

4 2.4G RF Transceiver

4.1 Block diagram

The ST17H30Q integrates advanced BLE/2.4GHz RF transceiver. The RF transceiver works in the worldwide 2.4GHz ISM (Industrial Scientific Medical) band and contains an integrated balun with a single-ended RF Tx/Rx port pin. No matching components are needed.

The transceiver consists of a fully integrated frequency synthesizer, a power amplifier, a modulator and a receiver. The transceiver works in standard-compliant BLE mode which supports FSK/GFSK modulations.

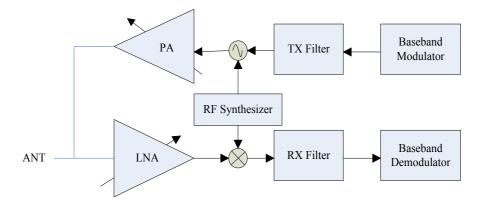


Figure 4-1 Block diagram of RF transceiver

The internal PA can deliver a maximum 6dBm output power, avoiding the needs for an external RF PA.

4.2 Function description

Air interface data rate, the modulated signaling rate for RF transceiver when transmitting and receiving data, supports 1Mbps mode for the ST17H30Q.

For the ST17H30Q, RF transceiver can operate with frequency ranging from 2.400GHz to 2.4835GHz. The RF channel frequency setting determines the center of the channel.

4.3 Baseband

The baseband contains dedicated hardware logic to perform fast AGC control, access code correlation, CRC checking, data whitening, encryption/decryption and frequency hopping logic.

The baseband supports all features required by Bluetooth v4.0 specification.

4.3.1 Packet format

Packet format is shown as Table 4-1:

Table 4-1 Pack	et Format
----------------	-----------

LSB		MSB		
Preamble	Access Address	PDU	CRC	
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)	

Packet length 80bit ~ 376bit (80~376us @ 1Mbps).

4.3.2 RSSI

The ST17H30Q provides accurate RSSI (Receiver Signal Strength Indicator) indication which can be read on per packet basis.

5 Clock

5.1 System clock

5.1.1 System clock sources

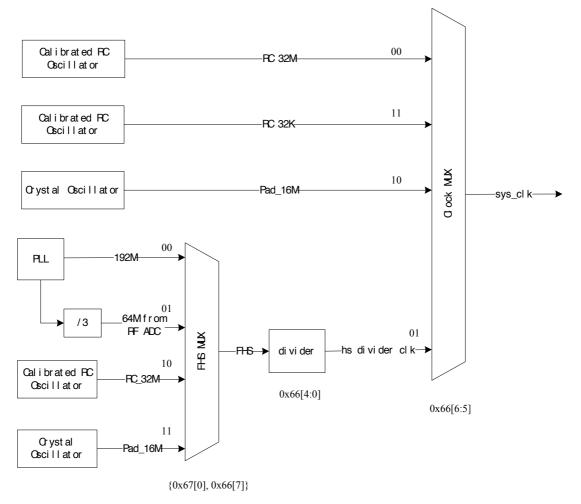


Figure 5-1 Block diagram of system clock

There are four selectable clock sources for system clock, including: 32MHz RC oscillator, hs divider clock, 16MHz pad clock (external crystal oscillator) and 32KHz RC oscillator. Register CLKSEL (address 0x66[6:5]) is used to select system clock source.

Commonly a 16MHz crystal oscillator can be employed to generate a basic clock signal for the system. The maximum frequency tolerance of the crystal is \pm 60ppm. And a low-power RC oscillator can be used to generate a 32KHz clock signal for the wakeup timer.

5.1.2 FHS select

The high speed clock (FHS) is selectable via address {0x67[0], 0x66[7]} from the following sources: 192MHz clock from PLL, 64MHz clock from RF ADC, 32MHz clock from RC oscillator or 16MHz pad clock (external crystal oscillator).

5.1.3 HS divider clock

If address 0x66[6:5] is set to 2b'01 to select the HS divider clock as system clock source, system clock frequency is adjustable via address 0x66[4:0]. $F_{System clock} = F_{FHS} / (system clock divider value in address 0x66[4:0] + 1).$

5.2 Module clock

Registers CLKEN0~CLKEN2 (address 0x63~0x65) are used to enable or disable clock for various modules. By disable the clocks of unused modules, current consumption could be reduced.

5.2.1 SAR ADC clock

ADC clock derives from FHS. Address 0x6b[7] should be set to 1b'1 to enable ADC clock.

ADC clock frequency dividing factor contains step and mod.

Addresses 0x6b[6:4] and 0x69[7:0] serve to configure ADC_step[10:0].

Addresses 0x6b[3:0] and 0x6a[7:0] serve to configure ADC_mod[11:0].

ADC clock is calculated according to the formula below:

 $F_{ADC clock} = F_{FHS} * adc_step[10:0]/adc_mod[11:0]$

5.3 Register table

Table 5- 1	Register table for clock
------------	--------------------------

Address	Mnemonic	Туре	Description	Reset Value
0x63	CLKENO	R/W	Clock enable control: 1 for enable; 0 for disable [0] : mcu	8c

Address	Mnemonic	Туре	Description	Reset Value
			[1] : zb	
			[2]: rsvd	
			[3]: dma	
			[4]: algm	
			[5]: sws	
			[6]: aif	
			[7]: rsvd	
			[0]rsvd	
			[1]i2c	
			[2]rsvd	
0x64	CLKEN1	R/W	[3]pwm	00
0704	CEREINI		[4]rsvd	00
			[5]rsvd	
			[6]sys timer	
			[7]qdec sysclk	
			[0]32k for qdec	
			[1]rsvd	
			[2]rsvd	
0.65		R/W	[3]rsvd	
0x65	CLKEN2		[4]rsvd	00
			[5]rsvd	
			[6]rsvd	
			[7]rsvd	
	CLKSEL	R/W	System clock select	
			[4:0]: system clock divider:	
			fhs/((CLKSEL[4:0]+1)).	
			Fhs refer to {0x67[0], 0x66[7]} FHS_sel	
			[6:5]	
0x66			2'b00:32m clock from rc	ff
			2'b01:hs divider clk	
			2'b10:16M clock from pad	
			2'b11:32k clk from rc	
			[7] FHS sel (see 0x67 definition)	
			{0x67[0],0x66[7]} fhs select	1
			2'b00: 192M clock from pll	
0x67	FHS_sel	R/W	2'b01:64M	00
			2'b10:32M clock from osc	
			2'b11:16M clock from pad	
0x68	rsvd	R/W		
0x69	Adc step[7:0]	R/W	adc_step[7:0]	00
0x6a	Adc mod[7:0]	R/W	adc_mod[7:0]	2
0x6b	adcmodstep	R/W	[3:0] adc_mod[11:8]	00

Address	Mnemonic	Туре	Description	Reset Value
			[7:4] adc_step[11:8], adc_step[11] is	
			enable bit.	
			adc_clk = clk_hs *adc_step[10:0] /	
			adc_mod[11:0]	
0x6c	DMIC_step	R/W	rsvd	1
0x6d	DMIC_mod	R/W	rsvd	2

6 Timers

6.1 Timer0~Timer2

The ST17H30Q supports three general 32-bit timers including Timer0~ Timer2 in active mode.

Timer0 and Timer1 support four modes: Mode 0 (System Clock Mode), Mode 1 (GPIO Trigger Mode), Mode 2 (GPIO Pulse Width Mode) and Mode 3 (Tick Mode).

Timer2 only supports Mode0 and Mode3. Generally Timer 2 is configured as "watchdog" to monitor firmware running.

6.1.1 Register table

 Table 6-1
 Register configuration for Timer0~Timer2

Address	Mnemonic	Туре	Description	Reset Value
0x620	TMR_CTRL0	RW	 [0]Timer0 enable [2:1] Timer0 mode. 0 using sclk, 1, using gpio, 2 count widht of gpi, 3 tick [3]Timer1 enable [5:4] Timer1 mode. [6]Timer2 enable 	00
			[7]Bit of timer2 mode	
0x621	TMR_CTRL1	RW	[0]Bit of timer2 mode	00

Address	Maamaaia	Turne	Description	Reset
Address	Mnemonic	Туре	Description	Value
			[7:1]Low bits of watch dog capture	
			[6:0]High bits of watch dog capture. It is	
0x622	TMR_CTRL2	RW	compared with [31:18] of timer2 ticker	00
			[7]watch dog capture	
0x623	TMR_STATUS	RW	 [0] timer0 status, write 1 to clear [1] timer1 status, write 1 to clear [2] timer2 status, write 1 to clear [3] watch dog status, write 1 to clear 	
0x624	TMR_CAPT0_0	RW	Byte 0 of timer0 capture	00
0x625	TMR_CAPT0_1	RW	Byte 1 of timer0 capture	00
0x626	TMR_CAPT0_2	RW	Byte 2 of timer0 capture	00
0x627	TMR_CAPT0_3	RW	Byte 3 of timer0 capture	00
0x628	TMR_CAPT1_0	RW	Byte 0 of timer1 capture	00
0x629	TMR_CAPT1_1	RW	Byte 1 of timer1 capture	00
0x62a	TMR_CAPT1_2	RW	Byte 2 of timer1 capture	00
0x62b	TMR_CAPT1_3	RW	Byte 3 of timer1 capture	00
0x62c	TMR_CAPT2_0	RW	Byte 0 of timer2 capture	00
0x62d	TMR_CAPT2_1	RW	Byte 1 of timer2 capture	00
0x62e	TMR_CAPT2_2	RW	Byte 2 of timer2 capture	00
0x62f	TMR_CAPT2_3	RW	Byte 3 of timer2 capture	00
0x630	TMR_TICK0_0	RW	Byte 0 of timer0 ticker	
0x631	TMR_TICK0_1	RW	Byte 1 of timer0 ticker	
0x632	TMR_TICK0_2	RW	Byte 2 of timer0 ticker	
0x633	TMR_TICK0_3	RW	Byte 3 of timer0 ticker	
0x634	TMR_TICK1_0	RW	Byte 0 of timer1 ticker	
0x635	TMR_TICK1_1	RW	Byte 1 of timer1 ticker	
0x636	TMR_TICK1_2	RW	Byte 2 of timer1 ticker	
0x637	TMR_TICK1_3	RW	Byte 3 of timer1 ticker	

Address	Mnemonic	Туре	Description	Reset Value
0x638	TMR TICK2 0	RW	Byte 0 of timer2 ticker	
0X030				
0x639	TMR_TICK2_1	RW	Byte 1 of timer2 ticker	
0x63a	TMR_TICK2_2	RW	Byte 2 of timer2 ticker	
0x63b	TMR_TICK2_3	RW	Byte 3 of timer2 ticker	

6.1.2 Mode0 (System Clock Mode)

In Mode 0, system clock is employed as clock source.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set to 0.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), an interrupt is generated, Timer stops counting and Timer status is updated.

Steps of setting Timer0 for Mode 0 is taken as an example.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via registers TMR_TICKO_0~TMR_TICKO_3 (address 0x630~0x633). Address 0x630 is lowest byte and 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer0

Set registers TMR_CAPT0_0~TMR_CAPT0_3 (address 0x624~0x627). Address 0x624 is lowest byte and 0x627 is highest byte.

3rd: Set Timer0 to Mode 0 and enable Timer0

Set register TMR_CTRL0 (address 0x620) [2:1] to 2b'00 to select Mode 0; Meanwhile set address 0x620[0] to 1b'1 to enable Timer0. Timer0 starts counting upward, and Tick value is increased by 1 on each positive edge of system clock until it reaches Timer0 Capture value.

6.1.3 Mode1 (GPIO Trigger Mode)

In Mode 1, GPIO is employed as clock source. The "m0"/"m1" register specifies the GPIO which generates counting signal for Timer0/Timer1.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive/negative edge of GPIO from preset initial Tick value. Generally the initial Tick value is set to 0. The "Polarity" register specifies the GPIO edge when Timer Tick counting increases.

Note: Refer to **Section 8.1.2** for corresponding "m0", "m1" and "Polarity" register address.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), an interrupt is generated and timer stops counting.

Steps of setting Timer1 for Mode 1 is taken as an example.

1st: Set initial Tick value of Timer1

Set Initial value of Tick via registers TMR_TICK1_0~TMR_TICK1_3 (address 0x634~0x637). Address 0x634 is lowest byte and 0x637 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer1

Set registers TMR_CAPT1_0~TMR_CAPT1_3 (address 0x628~0x62b). Address 0x628 is lowest byte and 0x62b is highest byte.

3rd: Select GPIO source and edge for Timer1

Select certain GPIO to be the clock source via setting "m1" register.

Select positive edge or negative edge of GPIO input to trigger Timer1 Tick increment via setting "Polarity" register.

4th: Set Timer1 to Mode 1 and enable Timer1

Set address 0x620[5:4] to 2b'01 to select Mode 1; Meanwhile set address 0x620[3] to 1b'1 to enable Timer1. Timer1 starts counting upward, and Timer1 Tick value is increased by 1 on each positive/negative (specified during the 3rd step) edge of GPIO until it reaches Timer1 Capture value.

6.1.4 Mode2 (GPIO Pulse Width Mode)

In Mode 2, system clock is employed as the unit to measure the width of GPIO pulse. The "m0"/"m1" register specifies the GPIO which generates control signal for Timer0/Timer1.

After Timer is enabled, Timer Tick is triggered by a positive/negative (configurable) edge of GPIO pulse. Then Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set to 0. The "Polarity" register specifies the GPIO edge when Timer Tick starts counting.

Note: Refer to **Section 8.1.2** for corresponding "m0", "m1" and "Polarity" register address.

While a negative/positive edge of GPIO pulse is detected, an interrupt is generated and timer stops counting. The GPIO pulse width could be calculated in terms of tick count and period of system clock.

Steps of setting Timer0 for Mode 2 is taken as an example.

1st: Set initial Timer0 Tick value

Set Initial value of Tick via registers TMR_TICKO_0~TMR_TICKO_3 (address 0x630~0x633). Address 0x630 is lowest byte and 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Select GPIO source and edge for Timer0

Select certain GPIO to be the clock source via setting "m0" register.

Select positive edge or negative edge of GPIO input to trigger TimerO counting start via setting "Polarity" register.

3rd: Set Timer0 to Mode 2 and enable Timer0

Set address 0x620[2:1] to 2b'10 to select Mode 2; Meanwhile set address 0x620 [0] to 1b'1 to enable Timer0.

TimerO Tick is triggered by a positive/negative (specified during the 2nd step) edge of GPIO pulse. TimerO starts counting upward and TimerO Tick value is increased by 1 on each positive edge of system clock.

While a negative/positive edge of GPIO pulse is detected, an interrupt isDS-ST17H30Q-E1536Ver2.4.0

generated and Timer0 tick stops.

4th: Read current Timer0 Tick value to calculate GPIO pulse width

Read current Timer0 Tick value from address 0x630~0x633.

Then GPIO pulse width is calculated as follows:

GPIO pulse width

= System clock period * (current Timer0 Tick – intial Timer0 Tick)
For initial Timer0 Tick value set to the recommended value of 0, then:
GPIO pulse width = System clock period * current Timer0 Tick.

6.1.5 Mode3 (Tick Mode)

In Mode 3, system clock is employed.

After Timer is enabled, Timer Tick starts counting upward, and Timer Tick value is increased by 1 on each positive edge of system clock.

This mode could be used as time indicator. There will be no interrupt generated. Timer Tick keeps rolling from 0 to 0xffffffff. When Timer tick overflows, it returns to 0 and starts counting upward again.

Steps of setting Timer0 for Mode 3 is taken as an example.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via address 0x630~0x633. Address 0x630 is lowest byte and address 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Timer0 to Mode 3 and enable Timer0

Set address 0x620[2:1] to 2b'11 to select Mode 3, meanwhile set address 0x620[0] to 1b'1 to enable Timer0. Timer0 Tick starts to roll.

3rd: Read current Timer0 Tick value

Current Timer0 Tick value can be read from address 0x630~0x633.

6.1.6 Watchdog

Programmable watchdog could reset chip from unexpected hang up or malfunction.

Only Timer2 supports Watchdog.

Timer2 Tick has 32bits. Watchdog Capture has only 14bits, which consists of TMR_CTRL2 (address 0x622) [6:0] as higher bits and TMR_CTRL1 (address 0x621) [7:1] as lower bits. Chip will be reset when the Timer2 Tick[31:18] matches Watch dog capture.

1st: Clear Timer2 Tick value

Clear registers TMR_TICK2_0 ~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte.

2nd: Enable Timer2

Set register TMR_CTRL0 (address 0x620) [6] to 1b'1 to enable Timer2.

3rd: Set 14-bit Watchdog Capture value and enable Watchdog

Set address 0x622[6:0] as higher bits of watchdog capture and 0x621[7:1] as lower bits. Meanwhile set address 0x622[7] to 1b'1 to enable Watchdog.

Then Timer2 Tick starts counting upwards from 0.

If bits[31:18] of Timer2 Tick value read from address 0x638~0x63b reaches watchdog capture, the chip will be reset.

6.2 32K LTIMER

The ST17H30Q supports a low frequency (32KHz) LTIMER in suspend mode or deep sleep mode. This timer can be used as one kind of wakeup source.

Analog register 3V_reg35[7] should be set to 1b'1 to enable the LTIMER.

3V_reg16~3V_reg18[6:0] serve to configure timing value for the LTIMER with the unit of ms.

3V_reg18[7] serves to select mode for the LTIMER: continuous mode, or single mode. In continuous mode, when the LTIMER expires, the timing value is automatically reloaded, the counting value returns to zero and starts counting upwards again. In single mode, when the LTIEMR expires, it stops counting.

3V_reg23[5] serves to select clock source for the LTIMER: 32K RC oscillator, or 16M Pad clock.

Current counting value can be read from 3V_reg32~3V_reg34 and 3V_reg35[6]. DS-ST17H30Q-E15 38 Ver2.4.0

Addr (Decimal)	Addr (Hexadecimal)	Name	Description	Default value
r16	0x10	32ktimer_cnt[7:0]	32ktimer cnt[0] = 1 means 4 cycles of 32k	
r17	0x11	32ktimer_cnt[15:8]		
	0x12[6:0]	32ktimer_cnt[22:16]		
r18	0x12[7]	32ktimer mode	32k timer mode,1: continuous mode, 0: single mode	
	0x17[2:0]	wakeup_en	[0]-> digital wakeup enable[1]>32k timer wakeup enable,[2] pad wake up enable	
r23	0x17[3]	32k timer reset		
125	0x17[4]	rsvd		
	0x17[5]	32k timer clock select	0:32k osc, 1 16M xtl	
	0x17[6]	rsvd		
	0x17[7]	rsvd	power down sequence enable	
r32	0x20	read only	32k timer_cnt[7:0](1 cycle of 32k clock will change the reslult)	
r33	0x21	read only	32k timer_cnt[15:8]	
r34	0x22	read only	32k timer_cnt[23:16]	
	0x23[0]	rsvd		
	0x23[1]	w/r	write 1 to clean timer wakeup status.	
	0x23[2]	w/r	write 1 to clean digital wakeup status	
-25	0x23[3]	w/r	write 1 to clean pad wakeup status	
r35	0x23[4]	wd_status	write 1 to clean watch dog status.	
	0x23[5]	read only	rsvd	
	0x23[6]	read only	32k timer_cnt[24]	
	0x23[7]	w/r	32k timer enable toggle signal, write 1 to enable 32k timer	

Table 6- 2	3.3V analog register table for LTIMER
------------	---------------------------------------

6.3 System timer

The ST17H30Q also supports a System Timer.

Address	Mnemonic	R/W	Function	Default
		,		Value
0x740	Sys_timer[7:0]	R/W		00
0x741	Sys_timer[15:8]	R/W		00
0x742	Sys_timer[23:16]	R/W		00
0.742	Sug time $r[21,24]$	R/W	System timer counter, write to set initial value.	00
0x743 Sys_timer[31:24]	r, vv	This is the sys timer counter	00	

Table 6- 3Register table for System Timer

7 Interrupt System

7.1 Interrupt structure

The interrupting function is applied to manage dynamic program sequencing based on real-time events triggered by timers, pins and etc.

For the ST17H30Q, there are 24 interrupt sources in all: 16 types are level-triggered interrupt sources and 8 types are edge-triggered interrupt sources.

When CPU receives an interrupt request (IRQ) from some interrupt source, it will decide whether to respond to the IRQ. If CPU decides to respond, it pauses current routine and starts to execute interrupt service subroutine. Program will jump to certain code address and execute IRQ commands. After finishing interrupt service subroutine, CPU returns to the breakpoint and continues to execute main function.

7.2 Register configuration

Address	Mnemonic	Туре	Description	Reset Value
0x640	MASK_0	RW	Byte 0 interrupt mask, level-triggered type {irq_host_cmd irq_qdec, rsvd, irq_pwm, irq_dma, rsvd, time2, time1, time0} [7]: irq_host_cmd irq_qdec [6]: rsvd [5]: irq_pwm [4]: irq_dma [3]: rsvd [2]: time2 [1]: time1 [0]: time0	00
0x641	MASK_1	RW	Byte 1 interrupt mask, level-triggered type	00

Table 7-1Register table for Interrupt system

Address	Mnemonic	Туре	Description	Reset Value
			{an_irq, irq_software, irq_zb, rsvd, rsvd,	
			rsvd, rsvd, rsvd}	
			[7]: an_irq	
			[6]: irq_software	
			[5]: irq_zb	
			[4]: rsvd	
			[3]: rsvd	
			[2]: rsvd	
			[1]: rsvd	
			[0]: rsvd	
			Byte 2 interrupt mask, edge-triggered type	
			{gpio2risc[0], rsvd, rsvd, rsvd, pm_irq,	
			irq_gpio, rsvd, rsvd}	
			[7]: gpio2risc[0]	
			[6]: rsvd	
0x642	MASK_2	RW	[5]: rsvd	00
			[4]: rsvd	
			[3]: pm_irq	
			[2]: irq_gpio	
			[1]: rsvd	
			[0]: rsvd	
0x643	IRQMODE	RW	[0] interrupt enable	00
07043	INQINODE	1.00	[1] reserved (Multi-Address enable)	00
			Byte 0 of priority	
0x644	PRIO_0	RW	1: High priority;	00
			0: Low priority	
0x645	PRIO_1	RW	Byte 1 of priority	00
0x646	PRIO_2	RW	Byte 2 of priority	00
0x648	IRQSRC_0	R	Byte 0 of interrupt source	
0x649	IRQSRC_1	R	Byte 1 of interrupt source	
0x64a	IRQSRC_2	R	Byte 2 of interrupt source	

7.2.1 Enable/Mask interrupt sources

Various interrupt sources could be enabled or masked by registers MASK_0~MASK_2 (address 0x640~0x642).

7.2.2 Interrupt mode and priority

Interrupt mode is typically-used mode. Register IRQMODE (address 0x643)[0] should be set to 1b'1 to enable interrupt function.

IRQ tasks could be set as High or Low priority via registers PRIO_0~PRIO_2 (address 0x644~0x646). When more than one interrupt sources assert interrupt requests at the same time, CPU will respond depending on respective interrupt priority levels. It's recommended not to modify priority setting.

7.2.3 Interrupt source flag

Three bytes in registers IRQSRC_0~IRQSRC_2 (address 0x648~0x64a) serve to indicate IRQ sources. Once IRQ occurs from certain source, the corresponding IRQ source flag will be raised to "High". User could identify IRQ source by reading address 0x648~0x64a.

When handling edge-triggered type interrupt, the corresponding IRQ source flag needs to be cleared via address 0x64a. Take the interrupt source irq_gpio for example: First enable the interrupt source by setting address 0x642[2] to 1; then set address 0x643 [0] to 1 to enable the interrupt. In interrupt handling function, 24-bit data is read from address 0x648~0x64a to determine which IRQ source is valid; if data bit[18] is 1, it means the irq_gpio interrupt is valid. Clear this interrupt source by setting address 0x64a bit[2] to 1.

As for level-type interrupt, IRQ interrupt source status needs to be cleared via setting corresponding module status register. Take Timer0 IRQ interrupt source for example, register TMR_STATUS (address 0x623) [0] should be written with 1b'1 to clear Timer0 status (refer to **Section 6.1.1**).

8 Interface

8.1 GPIO

The ST17H30QET24 supports up to 14 GPIOs. Except for dedicated GPIOs, all digital IOs can be used as general purpose IOs. Please refer to **Section 1.6** for available GPIO resources.

8.1.1 Basic configuration

8.1.1.1 Multiplexed functions

Please refer to Table 8-1 for various GPIO interface configuration.

Pin	Default				Act as	A	Act as GP	0	Input	DS (Drive
Name	Function	Priority0	Priority1	Priority2	GPIO	OEN	Input	Output	Enable	Strength)
MCLK	MCLK				5a6[2]	5a2[2]	5a0[2]	5a3[2]	5a1[2]	5a5[2]
MSDO	MSDO				5a6[3]	5a2[3]	5a0[3]	5a3[3]	5a1[3]	5a5[3]
MSDI	MSDI				5a6[4]	5a2[4]	5a0[4]	5a3[4]	5a1[4]	5a5[4]
MSCN	MSCN				5a6[1]	5a2[1]	5a0[1]	5a3[1]	5a1[1]	5a5[1]
SWS	SWS				5a6[5]	5a2[5]	5a0[5]	5a3[5]	5a1[5]	5a5[5]
GP9/	GPIO				F0-[1]	50-[1]	500[1]	F.0 [1]	500[1]	F0-[[1]
pwm0	input				58e[1]	58a[1]	588[1]	58b[1]	589[1]	58d[1]
GP10/	GPIO				E0-[2]	E 0-[2]	E00[2]		F 90[2]	
pwm1	input				58e[2]	58a[2]	588[2]	58b[2]	589[2]	58d[2]
GP17/	CDIO									
pwm2_inv/	GPIO	pwm2_inv			596[1]	592[1]	590[1]	593[1]	591[1]	595[1]
ANAO	input									
GP18/	GPIO					502[2]	500[2]	E02[2]	E01[2]	E0E[2]
ANA1	input				NA	592[2]	590[2]	593[2]	591[2]	595[2]
GP22/	GPIO									
scl/		scl			NA	592[6]	590[6]	593[6]	591[6]	595[6]
ANA2	input									
GP23/	GPIO									
sda/		sda			596[7]	592[7]	590[7]	593[7]	591[7]	595[7]
ANA3	input									
GP30/	GPIO	scl			NA	59a[6]	598[6]	59b[6]	599[6]	59d[6]
scl	input	501				556[0]	590[0]	נסומבר	555[0]	550[0]
GP31/	GPIO	sda			59e[7]	59a[7]	598[7]	59b[7]	599[7]	59d[7]

Table 8-1 GPIO lookup table 1 for the ST17H30QET24

DS-ST17H30Q-E15

Pin	Default	Priority0	Priority1	Priority2	Act as	A	Act as GP	0	Input	DS (Drive
Name	Function	Phontyo	Phontyi	PHOILyz	GPIO	OEN	Input	Output	Enable	Strength)
sda	input									
		5d4[0] =1								
GP5/		sda								
sda/	GPIO	(this	5d4[1]=1					E00[E]	E01[E]	
pwm2_inv/	input	function	pwm3	pwm2_inv	586[5]	582[5]	580[5]	583[5]	581[5]	585[5]
pwm3		should be								
		disabled)								

*Notes:

(1) OEN: active low. 0: output enable.

(2) Input Enable: active high. 1: input enable.

(3) NA: no configuration.

(4) Priority0 > Priority1 > Priority2.

(5) For the ST17H30QET24, it's not recommended to use GP5 as I2C_SDA function.

The pins among GP0~GP32 (including GP5, GP9~GP10, GP17~GP18, GP22~GP23, GP30~GP31) are used as GPIO input function by default. For a pin with multiplexed function(s), to enable the function with lower priority, other function(s) with higher priority should be disabled first.

Take the **MCLK** as an example:

(1) This pin acts as MCLK function by default.

(2) To use the pin as GPIO function, address 0x5a6[2] should be set to 1b'1.

If the pin is used as output, its "OEN" register (address 0x5a2[2]) and "Input Enable" register (address 0x5a1[2]) should be cleared.

If the pin is used as input, its "OEN" register (address 0x5a2[2]) and "Input Enable" register (address 0x5a1[2]) should be set to 1b'1.

Take the **GP5/sda/pwm2_inv/pwm3** as another example:

DS-ST17H30Q-E15

- (1) This pin acts as GPIO input by default.
- (2) To use the pin as GPIO output, address 0x586[5] should be set to 1b'1, and addresses {0x582[5], 0x581[5]} should be cleared.
- (3) To use the pin as pwm3 function, addresses {0x586[5], 0x5d4[0]} should be cleared, and 0x5d4[1] should be set to 1b'1.
- (4) To use the pin as pwm2_inv function, addresses {0x586[5], 0x5d4[0], 0x5d4[1]} should be cleared.

8.1.1.2 Drive strength

The registers in the "**DS**" column are used to configure corresponding pin's driving strength: "1" indicates maximum drive level, while "0" indicates minimal drive level. The "DS" configuration will take effect when the pin is used as output. It's set as the strongest driving level by default. In actual applications, driving strength can be decreased to lower level if necessary.

As shown in Table 8- 2, all the GPIO pins support maximum drive level of 4mA ("DS"=1) and minimal drive level of 0.7mA ("DS"=0) with the following exceptions:

- MCLK, MSDO, MSDI and MSCN: maximum=4mA ("DS"=1), minimum=2mA ("DS"=0);
- ♦ SWS: maximum=8mA ("DS"=1), minimum=4mA ("DS"=0).

No.	Pin Name	Drive	Strength
NO.	Pin Name	"DS"=0	"DS"=1
1	MSDO	2mA	4mA
2	MSDI	2mA	4mA
3	MSCN	2mA	4mA
4	SWS	4mA	8mA
5	GP9/pwm0 #	0.7mA	4mA
6	GP10/pwm1 #	0.7mA	4mA
11	GP17/pwm2_inv/ANA0 *	0.7mA	4mA
12	GP18/ANA1 *	0.7mA	4mA
13	GP22/scl/ANA2 *	0.7mA	4mA

Table 8-2 IO drive strength for ST17H30QET24

No.	Pin Name	Drive Strength		
NO.	Fill Naille	"DS"=0	"DS"=1	
14	GP23/sda/ANA3 *	0.7mA	4mA	
18	GP30/scl	0.7mA	4mA	
19	GP31/sda *	0.7mA	4mA	
23	GP5/sda/pwm2_inv/ pwm3 #	0.7mA	4mA	
24	MCLK	2mA	4mA	

8.1.2 Connection relationship between GPIO and related modules

GPIO can be used to generate GPIO interrupt signal for interrupt system, counting or control signal for Timer/Counter module, or GPIO2RISC interrupt signal for interrupt system.

For the "Exclusive Or (XOR)" operation result for input signal from any GPIO pin and respective "polarity" value, on one hand, it takes "And" operation with "irq" and generates GPIO interrupt request signal; on the other hand, it takes "And" operation with "m0/m1", and generates counting signal in Mode 1 or control signal in Mode 2 for Timer0/Timer1, or generates GPIO2RISC interrupt request signal.

GPIO interrupt request signal = | ((input ^ polarity) & irq);

Counting (Mode 1) or control (Mode 2) signal for Timer0 = | ((input ^ polarity) & m0); Counting (Mode 1) or control (Mode 2) signal for Timer1 = | ((input ^ polarity) & m1); GPIO2RISC[0] interrupt request signal = | ((input ^ polarity) & m0);

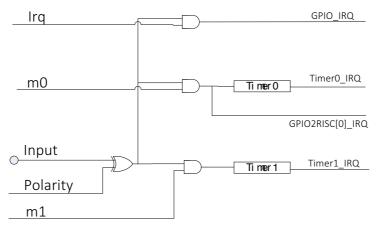


Figure 8-1 Logic relationship between GPIO and related modules

Please refer to Table 8- 3 and Table 7- 1 to learn how to configure GPIO for interrupt system or Timer0/Timer1 (Mode 1 or Mode 2).

- (1) First enable GPIO function, IE and disable OEN.
- (2) GPIO IRQ signal: Select GPIO interrupt trigger edge (positive edge or negative edge) via configuring "Polarity" register, and set corresponding GPIO interrupt enabling bit "Irq" register. Finally enable GPIO interrupt (irq_gpio at address 0x642[2]).

User can read addresses {0x5c0 ~ 0x5c3, 0x5d0} to see which GPIO asserts GPIO interrupt request signal. **Note:** 0x5c0[5] --> GP5, 0x5c1[1] --> GP9, 0x5c1[2] --> GP10, 0x5c2[1] --> GP17, 0x5c2[2] --> GP18, 0x5c2[6] --> GP22, 0x5c2[7] --> GP23, 0x5c3[6] --> GP30, 0x5c3[7] --> GP31, 0x5d0[1] --> MSCN, 0x5d0[2] --> MCLK, 0x5d0[3] --> MSDO, 0x5d0[4] --> MSDI, 0x5d0[5] --> SWS.

(3) Timer/Counter counting or control signal: Configure "Polarity" register (In Mode 1, it determines GPIO edge when Timer Tick counting increases; in Mode 2, it determines GPIO edge when Timer Tick starts counting) and set "m0/m1" register.

User can read addresses {0x5c4~0x5c7, 0x5d1}/{0x5c8~0x5cb, 0x5d2} to see which GPIO asserts counting signal (in Mode 1) or control signal (in Mode 2) for Timer0/Timer1. **Note: Timer0**: {0x5c4[5] --> GP5, 0x5c5[1] --> GP9, 0x5c5[2] --> GP10, 0x5c6[1] --> GP17, 0x5c6[2] --> GP18, 0x5c6[6] --> GP22, 0x5c6[7] --> GP23, 0x5c7[6] --> GP30, 0x5c7[7] --> GP31, 0x5d1[1] --> MSCN, 0x5d1[2] --> MCLK, 0x5d1[3] --> MSDO, 0x5d1[4] --> MSDI, 0x5d1[5] --> SWS} / **Timer1**: {0x5c8[5] --> GP5, 0x5c9[1] --> GP9, 0x5c9[2] --> GP10, 0x5ca[1] --> GP17, 0x5ca[2] --> GP18, 0x5ca[6] --> GP22, 0x5ca[7] --> GP23, 0x5cb[6] --> GP24, 0x5ca[7] --> GP17, 0x5ca[2] --> GP18, 0x5ca[1] --> MSDO, 0x5d1[4] --> MSDI, 0x5d1[5] --> SWS} / **Timer1**: {0x5c8[5] --> GP5, 0x5c9[1] --> GP22, 0x5ca[7] --> GP23, 0x5cb[6] --> GP30, 0x5cb[7] --> GP31, 0x5d2[1] --> MSCN, 0x5d2[2] --> MCLK, 0x5d2[3] --> MSDO, 0x5d2[4] --> MSDI, 0x5d2[5] --> SWS}.

(4) GPIO2RISC IRQ signal: Select GPIO2RISC interrupt trigger edge (positive edge or negative edge) via configuring "Polarity", and set corresponding GPIO enabling bit "m0". Enable GPIO2RISC[0] interrupt, i.e. "gpio2risc[0]" (address DS-ST17H30Q-E15 47 Ver2.4.0

0x642[7]).

User can read addresses {0x5c4~0x5c7, 0x5d1} to see which GPIO asserts GPIO2RISC[0] interrupt request signal. **Note:** {0x5c4[5] --> GP5, 0x5c5[1] --> GP9, 0x5c5[2] --> GP10, 0x5c6[1] --> GP17, 0x5c6[2] --> GP18, 0x5c6[6] --> GP22, 0x5c6[7] --> GP23, 0x5c7[6] --> GP30, 0x5c7[7] --> GP31, 0x5d1[1] --> MSCN, 0x5d1[2] --> MCLK, 0x5d1[3] --> MSDO, 0x5d1[4] --> MSDI, 0x5d1[5] --> SWS}.

Pin	Input (R)	Polarity 1: active low 0: active high	Irq	m0	m1
MCLK	5a0[2]	5a4[2]	5a7[2]	5ac[2]	5b4[2]
MSDO	5a0[3]	5a4[3]	5a7[3]	5ac[3]	5b4[3]
MSDI	5a0[4]	5a4[4]	5a7[4]	5ac[4]	5b4[4]
MSCN	5a0[1]	5a4[1]	5a7[1]	5ac[1]	5b4[1]
SWS	5a0[5]	5a4[5]	5a7[5]	5ac[5]	5b4[5]
GP9/pwm0	588[1]	58c[1]	58f[1]	5a9[1]	5b1[1]
GP10/pwm1	588[2]	58c[2]	58f[2]	5a9[2]	5b1[2]
GP17/ pwm2_inv/ ANA0	590[1]	594[1]	597[1]	5aa[1]	5b2[1]
GP18/ANA1	590[2]	594[2]	597[2]	5aa[2]	5b2[2]
GP22/ scl/ANA2	590[6]	594[6]	597[6]	5aa[6]	5b2[6]
GP23/ sda/ANA3	590[7]	594[7]	597[7]	5aa[7]	5b2[7]
GP30/scl	598[6]	59c[6]	59f[6]	5ab[6]	5b3[6]
GP31/sda	598[7]	59c[7]	59f[7]	5ab[7]	5b3[7]
GP5/ sda/	580[5]	584[5]	587[5]	5a8[5]	5b0[5]

Table 8-3GPIO lookup table 2 for the ST17H30QET24

Pin	Input (R)	Polarity 1: active low 0: active high	Irq	m0	m1
pwm2_inv/ pwm3					

8.2 I2C

The ST17H30Q embeds I2C hardware module, which could only act as Slave mode. I2C is a popular inter-IC interface requiring only 2 bus lines, a serial data line (SDA) and a serial clock line (SCL).

8.2.1 Pin configuration

Table 8-4 shows I2C interface configuration and priority:

Table 8-4 I2C pin configuration

a) ~586[5] & 5d4[0]	Reserved (GP4/GP5)			
b) ~58e[5]	Reserved (GP12/GP13)			
c) ~596[7]	GP22/GP23			
d) ~59e[7]	GP30/GP31			
Priority: a) $>$ b) $>$ c) $>$ d)				

To use GP22 and GP23 of the ST17H30QET24 as I2C_SCL and I2C_SDA respectively, address 596[7] should be cleared, meanwhile GP5 should not be configured as I2C_SDA function.

It's noted that the I2C_SCL pin must be configured as "input" via setting the corresponding "Input Enable" register to 1b'1.

8.2.2 Lenze I2C communication protocol

Lenze I2C module supports standard mode (100kbps), Fast-mode (400kbps), Fast-mode plus (1Mbps) and High-speed mode (3.4Mbps) with restriction that system

```
DS-ST17H30Q-E15
```


clock must be by at least 10x of data rate.

Two wires, SDA and SCL carry information between Master device and Slave device connected to the bus. Each device is recognized by unique address. Master device is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. Slave device is the device addressed by a master.

Both SDA and SCL are bidirectional lines connected to a positive supply voltage via a pull-up resister. When the bus is free, both lines are HIGH. It's noted that data in SDA line must keep stable when clock signal in SCL line is at high level, and level state in SDA line is only allowed to change when clock signal in SCL line is at low level.

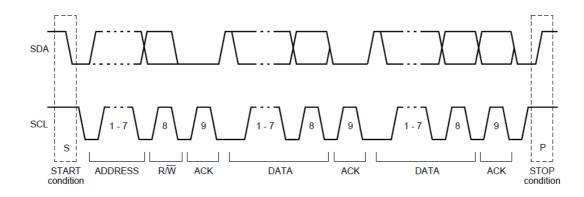
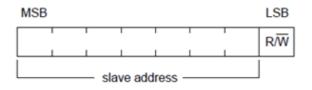


Figure 8-2 I2C timing chart

8.2.3 Register table

Table 8-5	Register table for I2C
-----------	------------------------


Addross	Address Name R/W Description	Description	Reset	
Address		N/ VV	Description	Value
0x00	rsvd	RW		
0x01	I2CID	RW	I2C ID	0x5c
0x02	rsvd	RW		
			[0]: address auto increase enable	
0x03	I2CSCT	RW	[1]: rsvd	0x01
			[2] enable host address	
0.420	DOMD	514	Command sent by host	
0x20	PCMD	RW	[6]: Host to device	

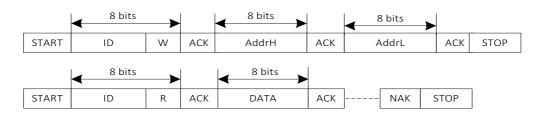
Address	Name	R/W	Description	Reset Value
			[7]: Device to host	
			W/r[0]:host_rd_clear_en: host read auto	
			clear enable	
0x21	HOSTCS		r/o[1]:host_cmd_rd:i2c host operation	0x01
UX21	HOSICS		have happened and is read operation	0x01
			r/o[2]:host_cmd_wr:i2c host operation	
			have happened and is write operation	
			[0]: write 1 clear software_irq, read	
			software irq status	
			[1]: write 1 clear an_irq , read an_irq	
0x22	irq		status	
			[2]: write 1 clear host_pkt_irq, read	
			host_pkt_irq status	
			[3] rsvd	
			[4] write 1 to trigger software irq	
0x3e	Reg_host_map_adrl	R/W	I2C mapping[7:0]: Lower byte of Mapping	0x80
	hes_host_hap_aut		mode buffer address	0,00
0x3f	Reg_host_map_adrh	R/W	I2C mapping[15:8]: Higher byte of	0x9f
	heg_host_hap_auth	11/ 11	Mapping mode buffer address	0731

8.2.4 I2C Slave mode

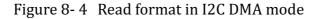
The I2C of the ST17H30Q can only be used as Slave. I2C slave address could be configured in I2CID (address 0x01) [7:1].

Figure 8-3 I2C slave address

In I2C Slave mode, Master could initiate transaction anytime. I2C slave module will reply ACK automatically.


Sub modes including Direct Memory Access (DMA) mode, Mapping mode and a specific "Command Analysis" mode are supported. The latter is designed specially for the user who wants to define and use his own I2C protocol and read/write format.

8.2.4.1 DMA mode


In DMA mode, other devices (Master) could read/write Register and/or SRAM of the ST17H30Q via I2C protocol, and initial access address is specified by I2C Master. In this mode, I2C Slave will execute the read/write command from I2C Master automatically. But user needs to notice that the lowest system clock shall be 10x faster than I2C bit rate.

The access address is offset by 0x800000. In ST17H30Q, Register address starts from 0x800000 and SRAM address starts from 0x808000. For example, if Addr(High) is 0xaa and Addr(Low) is 0xcc, the real address of accessed data is 0x80aacc.

Master could access data of the ST17H30Q via I2C byte by byte, and access address supports automatical increment by setting address 0x03[0] to 1.

Read Format in DMA mode

Write Format in DMA mode

Figure 8-5 Write format in I2C DMA mode

8.2.4.2 Mapping mode

Address 0x03[2] should be set to 1b'1 to enable Mapping mode.

In Mapping mode, data written and read by I2C master will be redirected to specified 128-byte buffer in SRAM. The initial address of the 128-byte buffer is configurable via addresses 0x3e~0x3f. Address 0x3e is lower byte and address 0x3f is higher byte. The first 64-byte buffer is for written data and following 64-byte buffer is for read data. Every time the data access will start from the beginning of the Write-buffer/Read buffer after I2C stop condition occurs.

Read Format in mapping mode

Figure 8-6 Read format in I2C Mapping mode

Write Format in mapping mode

Figure 8-7 Write format in I2C Mapping mode

8.2.4.3 Command analysis mode

For I2C Master that uses self-defined I2C protocol and read/write format, a specific "Command Analysis" mode is supported by the I2C of the ST17H30Q (Slave).

I2C Master should specify initial access address as 0x20 (offset by 0x800000) in DMA mode, or configure mapping mode buffer address registers (addresses 0x3e~0x3f) as 0x800020 in mapping mode, by sending command to I2C Slave. I2C Slave supports command analysis function. By reading address 0x21[2:1], user can know whether the I2C Master operation that just happened is read or write operation.

8.3 SWS

The ST17H30Q supports SWS (Single Wire Slave) interface which represents the slave device of the single wire communication system developed by Lenze. The maximum data rate can be up to 2Mbps.

8.4 Pull-up/Pull-down resistor

For the ST17H30QET24, the GPIOs including GP17~GP18, GP22~GP23 and GP31 support configurable $1M\Omega/10K\Omega$ pull-up resistor or $100K\Omega$ pull-down resistor; the GPIOs including GP5 and GP9~GP10 support $100K\Omega$ pull-down resistor. Related register configuration can be found in Table 8- 6. By default the pull-up and pull-down resistors are disabled.

Take the GP17 as an example: Setting analog register afe3V_reg08<1:0> to 2b'01/2b'10/2b'11 is to enable $1M\Omega$ pull-up resistor/ $10K\Omega$ pull-up resistor/ $100K\Omega$ pull-down resistor respectively for GP17; Clearing the two bits disables pull-up and pull-down resistors for GP17.

Address(bit)	Mnemonic	Reset value	Description
afe3V_reg08<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux input GP17 pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 – 10kOhm pull-up resistor 11 – 100kOhm pull-down resistor
afe3V_reg08<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux input GP18 pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 – 10kOhm pull-up resistor 11 – 100kOhm pull-down resistor
afe3V_reg08<5:4>	pullupdown_ctrl<1:0>	00	reserved
afe3V_reg08<7:6>	pullupdown_ctrl<1:0>	00	reserved
afe3V_reg09<1:0>	pullupdown_ctrl<1:0>	00	reserved

Table 8-63.3V analog registers related to Pull-up/Pull-down resistor

Address(bit)	Mnemonic	Reset value	Description
afe3V_reg09<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux input GP22 pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 – 10kOhm pull-up resistor 11 – 100kOhm pull-down resistor
afe3V_reg09<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux input GP23 pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 – 10kOhm pull-up resistor 11 – 100kOhm pull-down resistor
afe3V_reg09<7:6>	pullupdown_ctrl<1:0>	00	reserved
afe3V_reg40<7:0>	pulldown_ctrl<7:0>	00000 000	GP6 ~GP0, GP32 pull down enable 0No pull down resistor 1enable 100kOhm pull down resistor
afe3V_reg41<7:0>	pulldown_ctrl<15:8>	00000 000	GP14 ~GP7 pull down enable 0No pull down resistor 1enable 100kOhm pull down resistor
afe3V_reg42<1:0>	pulldown_ctrl<17:16>	00	reserved
afe3V_reg42<3:2>	pullupdown_ctrl<1:0>	00	reserved
afe3V_reg42<5:4>	pullupdown_ctrl<1:0>	00	reserved
afe3V_reg42<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux input GP31 pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 – 10kOhm pull-up resistor 11 – 100kOhm pull-down resistor

9 Quadrature Decoder

The ST17H30Q embeds one quadrature decoder (QDEC) which is designed mainly for applications such as wheel. The QDEC implements debounce function to filter out jitter on the two phase inputs, and generates smooth square waves for the two phase.

9.1 Input pin selection

The QDEC supports two phase input; each input is selectable from the 6 dedicated GPIOs including GP17~GP18, GP22~GP23 and GP30~GP31 via setting address 0xd2[4:0] (for channel a)/0xd3[4:0] (for channel b).

Address 0xd2[4:0]/0xd3[4:0]	Pin
0	Reserved (GP16)
1	GP17
2	GP18
3	Reserved (GP19)
4	Reserved (GP20)
5	Reserved (GP21)
6	GP22
7	GP23
8	Reserved (GP24)
9	Reserved (GP25)
10	Reserved (GP26)
11	Reserved (GP27)
12	Reserved (GP28)
13	Reserved (GP29)
14	GP30
15	GP31

Table 9- 1	Input a	pin selection	
	III P G C P		

9.2 Common mode and double accuracy mode

The QDEC embeds an internal hardware counter, which is not connected with bus.

Address 0xd7[0] serves to select common mode or double accuracy mode.

For each wheel rolling step, two pulse edges (rising edge or falling edge) are generated.

```
DS-ST17H30Q-E15
```


If address 0xd7[0] is cleared to select common mode, the QDEC Counter value (real time counting value) is increased/decreased by 1 only when the same rising/falling edges are detected from the two phase signals.

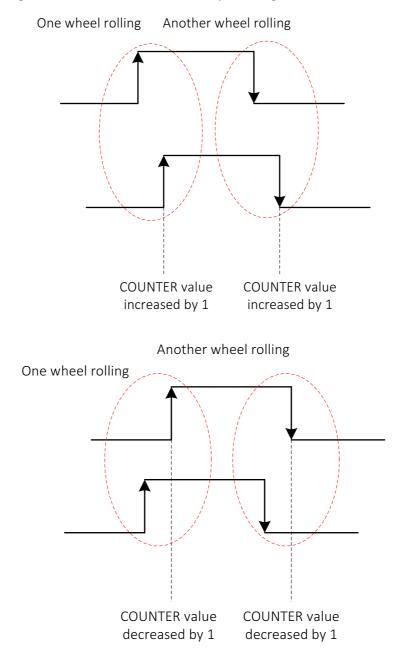


Figure 9-1 Common mode

If address 0xd7[0] is set to 1b'1 to select double accuracy mode, the QDEC Counter value (real time counting value) is increased/decreased by 1 on each rising/falling edge of the two phase signals; the QDEC Counter value will be increased/decreased by 2 for one wheel rolling.

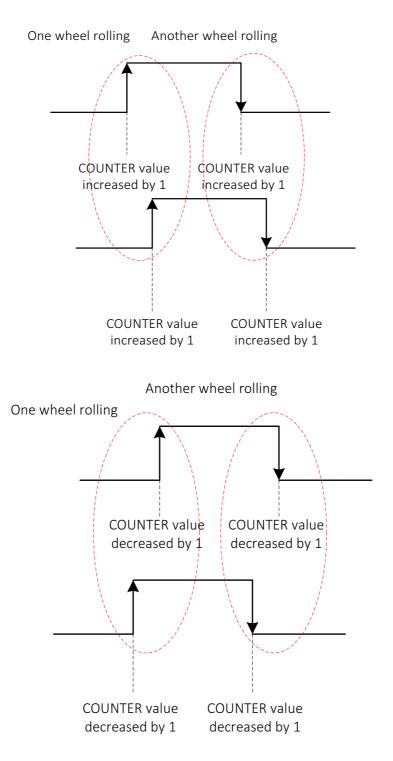


Figure 9-2 Double accuracy mode

9.3 Read real time counting value

Neither can Hardware Counter value be read directly via software, nor can the counting value in address 0xd0 be updated automatically.

To read real time counting value, first write address 0xd8[0] with 1b'1 to load

Hardware Counter data into the QDEC_COUNT register, then read address 0xd0.

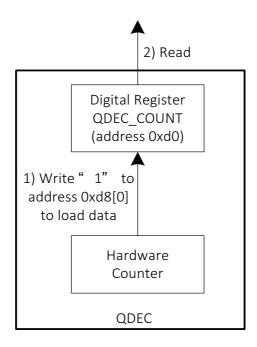


Figure 9-3 Read real time counting value

9.4 QDEC interrupt

Address 0xd4[0] serves to enable or mask QDEC interrupt.

If address 0xd4[0] is set to 1b'1 to enable QDEC interrupt, whenever counter value changes, an QDEC IRQ is asserted and address 0xd5[0] is set to 1b'1 automatically. Writing 1b'1 to address 0xd5[0] can clear the interrupt flag bit.

9.5 QDEC reset

Address 0xd6[0] serves to reset the QDEC. The QDEC Counter value is cleared to zero.

9.6 Other configuration

The QDEC supports hardware debouncing. Address 0xd1[2:0] serves to set filtering window duration. All jitter with period less than the value will be filtered out and thus does not trigger count change.

Address 0xd1[4] serves to set input signal initial polarity.

Address 0xd1[5] serves to enable shuttle mode. Shuttle mode allows non-overlapping two phase signals as shown in the following figure.

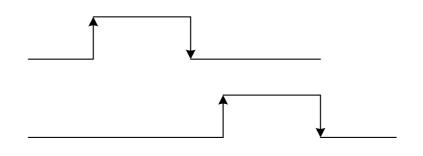


Figure 9-4 Shuttle mode

9.7 Register table

Table 9- 2	Register table for QDEC	
------------	-------------------------	--

Address	Mnemonic	Туре	Description	Reset value
0xd0	QDEC COUNT	R	QDEC Counting value (read to clear):	
0,00	QDEC_COONT	n	Pulse edge number	
			[2:0] :	
			filter time (can filter 2^n *clk_32k*2 width	
			de glitch)	
0xd1	QDEC_CC	R/W	[4]: pola, input signal pola	
			0: no signal is low, 1: no signal is high	
			[5]:shuttle mode	
			1 to enable shuttle mode	
0			[4:0] QDEC0 input pin select for channel a	000
0xd2	QDEC_CHNA0	R/W	choose 1 of 6 pins for input channel a	0x00
0.42			[4:0] QDEC0 input pin select for channel b	001
0xd3	QDEC_CHNB0	R/W	choose 1 of 6 pins for input channel b	0x01
			[0]Interrupt mask	
0xd4	QDEC_MASK	R/W	1: enable	0x00
			0: mask	
0xd5		D	[0]Interrupt flag	
UXUS	QDEC_INT	R	Write 1 to clear	
0xd6	QDEC_RST	R/W	[0]Write 1 to reset QDEC	0x0
0xd7	QDEC_DOUBLE	R/W	[0]Enable double accuracy mode	0x0
0xd8		R/W	[0]write 1 to load data	
UXU8	DATA_LOAD	r/ VV	when load completes it will be 0	

10 SAR ADC

The ST17H30Q integrates one ADC module, which can be used to sample battery voltage and external analog input.

10.1 Register table

Address	Mnemonic	Туре	e Description	Reset
Address	Winemonie	Type	Description	Value
			Digital Registers	
0x2b	ADCREF	RW	[0]select reference 0: Vbg 1: VDDH [7:1] rsvd	0x03
0x2c	ADCMUXM	RW	Analog inputs select bit [2:0] sel ana input 000: close all 001: GP17 010: GP18 011: GP22 100: GP23 101: VDDDEC 110: V _{GP23} or 1/3*V _{GP23} . Refer to analog register afe3V_reg02<3>. 111: reserved [5:4] sel dif input choose single or diff mode and select negative input 00: single mode 01: GP18 as negative input 10: GP23 as negative input	0x02
0x35	ADC_RUN	R/W	[7] manual mode run signal	0
0x38	ADC_DAT[7:0]	R		
0x39	ADC_DAT[9:8]	R	[1:0] ADC_DAT[9:8] [6:2] rsvd [7] adc_busy	
0x3c	ADC TSAPM	RW	[2:0] Select number of clock cycles for ADC sampling	0x00

Table 10-1 Register table for SAR ADC

Address	Mnemonic	Туре	Description	Reset Value
			Setting # of clock cycles	
			000 3	
			001 6	
			010 9	
			011 12	
			100 18	
			101 24	
			110 48	
			111 144	
			[4:3] ADC resolution select	
			00:7bit 01:8bit 10:9bit 11:10bit	
			[5] Select sign of ADC output data bit<9>	
			0: positive 1: negative	
			Analog registers	
afe3V_reg			Power down SAR ADC	
	Power Down	RW	1: Power down	1
06<0>			0: Power up	
			Select V_{GP23} or $1/3*V_{GP23}$ as ADC input (refer	
afe3V_reg		RW	to digital register 0x2c[2:0]).	0
02<3>	atb	r vv	0: V _{GP23}	U
	_		1: 1/3*V _{GP23}	

10.2 SAR ADC clock

ADC clock derives from FHS. Address 0x6b[7] should be set to "1" to enable ADC clock.

ADC clock must be lower than 5M when ADC reference voltage is selected as VDDH and must be lower than 4M when ADC reference voltage is selected as Vbg.

ADC clock is calculated according to the formula below:

 $F_{ADC clock} = F_{FHS} * adc_step[10:0]/adc_mod[11:0]$

Refer to Section 5.2.1 SAR ADC clock for details.

10.3 Select ADC range, resolution and sampling time

ADC range is same as the ADC reference voltage, which is configured by register

DS-ST17H30Q-E15

0x2b[0]: Vbg (1.26V bandgap reference), or VDDH.

Address 0x3c[4:3] serves to set resolution: 7bit, 8bit, 9bit or 10bit. ADC data format is always 10bit no matter the conversion bit is set. Address 0x3c[5] serves to set the sign of ADC output data bit[9] as positive or negative. For example, 8 bits resolution indicates higher 8 bits are valid bits and the lower 2 bits are invalid bits.

ADC sampling time can be configured by address 0x3c[2:0], the lower sampling cycle, the shorter ADC convert time.

10.4 Select input mode and channel

The ST17H30Q ADC has up to 4 input channel which can be selected by address 0x2c[2:0].

Address 0x2c[5:4] serves to select differential mode or single-end input mode.

When address 0x2c[5:4] is set to 2b'00 to select single-end mode, 0x2c[2:0] serves to select input channel.

For example, if address 0x2c is set to 0x06 (i.e. 8b' 00000110), and analog register afe3V_reg02<3> is set to 1b'1, $1/3^*V_{GP23}$ is selected as ADC input of single-end mode.

When address 0x2c[5:4] is set to 2b'01/2b'10/2b'11, differential mode is selected, the corresponding channel identified by address 0x2c[5:4] is selected as negative input, and the positive input is selectable via address 0x2c[2:0].

For example, if address 0x2c is set to 0x11 (i.e. 8b'00010001), GP17 and GP18 are selected as positive-end and negative-end input of differential mode; actual input signal for ADC is the difference of V_{GP17} and V_{GP18} (i.e. V_{GP17} minus V_{GP18}).

10.5 ADC start

Address 0x35[7] set to "1" starts ADC sampling and conversion process.

10.6 ADC status

ADC busy flag bit, i.e. address 0x39[7], indicates whether ADC is busy.

10.7 ADC data

The real time output data ADC_DAT[9:0] can be read from addresses 0x39~0x38.

11 PWM

The ST17H30Q supports up to 4-channel PWM (Pulse-Width-Modulation) output. PWM#n_INV indicates inverted output corresponding to PWM#n.

11.1 Register table

Address	Mnemonic	Туре	Description	Reset
				Value
			[0]: 0disable PWM0, 1enable PWM0	
			[1]: 0disable PWM1, 1enable PWM1	
0x780	PWM_EN	R/W	[2]: 0disable PWM2, 1enable PWM2	0x00
			[3]: 0disable PWM3, 1enable PWM3	
0x781	PWM_CLK	R/W	(PWM_CLK+1)*sys_clk	0x00
			[1:0]: 00-pwm0 normal mode	
0x782	PWM_MODE	R/W	[1:0]: 01-pwm0 count mode	0x00
			[1:0]: 11-reserved	
0x783	PWM_CC0	R/W	[3:0]:1'b1 invert PWM output	0x00
0x784	PWM_CC1	R/W	[3:0]:1'b1 invert PWM_INV output	0x00
0x785	PWM_CC2	R/W	[3:0]:1'b1 PWM' pola,low level first	0x00
0x788	PWM_PHASE0	R/W	[7:0] bits 7-0 of PWM0's phase time	0x00
0x789	PWM_PHASE0	R/W	[15:8] bits 15-8 of PWM0's phase time	0x00
0x78a	PWM_PHASE1	R/W	[7:0] bits 7-0 of PWM1's phase time	0x00
0x78b	PWM_PHASE1	R/W	[7:8] bits 15-8 of PWM1's phase time	0x00
0x78c	PWM_PHASE2	R/W	[7:0] bits 7-0 of PWM2's phase time	0x00
0x78d	PWM_PHASE2	R/W	[15:8] bits 15-8 of PWM2's phase time	0x00
0x78e	PWM_PHASE3	R/W	[7:0] bits 7-0 of PWM3's phase time	0x00
0x78f	PWM_PHASE3	R/W	[15:8] bits 15-8 of PWM3's phase time	0x00
0 70 /			[7:0] bits 7-0 of PWM0's high time or low	0.00
0x794	PWM_TCMP0	R/W	time(if pola[0]=1)	0x00
0.5			[15:8] bits 15-8 of PWM0's high time or	
0x795	PWM_TCMP0	R/W	low time	0x00
0x796	PWM_TMAX0	R/W	[7:0] bits 7-0 of PWM0's cycle time	0x00
0x797	PWM_TMAX0	R/W	[15:8] bits 15-8 of PWM0's cycle time	0x00

Table 11-1 Register table for PWM

Address	Mnemonic	Туре	Description	Reset
Address			Description	Value
0x798	PWM_TCMP1	R/W	[7:0] bits 7-0 of PWM1's high time or low time(if pola[1]=1)	0x00
0x799	PWM_TCMP1	R/W	[15:8] bits 15-8 of PWM1's high time or low time	0x00
0x79a	PWM_TMAX1	R/W	[7:0] bits 7-0 of PWM1's cycle time	0x00
0x79b	PWM_TMAX1	R/W	[15:8] bits 15-8 of PWM1's cycle time	0x00
0x79c	PWM_TCMP2	R/W	[7:0] bits 7-0 of PWM2's high time or low time(if pola[2]=1)	0x00
0x79d	PWM_TCMP2	R/W	[15:8] bits 15-8 of PWM2's high time or low time	0x00
0x79e	PWM_TMAX2	R/W	[7:0] bits 7-0 of PWM2's cycle time	0x00
0x79f	PWM_TMAX2	R/W	[15:8] bits 15-8 of PWM2's cycle time	0x00
0x7a0	PWM_TCMP3	R/W	[7:0] bits 7-0 of PWM3's high time or low time(if pola[3]=1)	0x00
0x7a1	PWM_TCMP3	R/W	[15:8] bits 15-8 of PWM3's high time or low time	0x00
0x7a2	PWM_TMAX3	R/W	[7:0] bits 7-0 of PWM3's cycle time	0x00
0x7a3	 PWM_TMAX3	R/W	[15:8] bits 15-8 of PWM3's cycle time	0x00
0x7ac	PWM_PNUM0	R/W	[7:0]PWM0 Pulse num in count mode	0x00
0x7ad	PWM_PNUM0	R/W	[15:8]	0x00
0x7b0	PWM_MASK	R/W	INT mask [0] PWM0 Pnum int 0: disable 1: Enable [1] rsvd [2] PWM0 frame int 0: disable 1: Enable [3] PWM1 frame int 0: disable 1: Enable [4] PWM2 frame int 0: disable 1: Enable [5] PWM3 frame int 0: disable 1: Enable [7:6] rsvd	0x00
0x7b1	PWM_INT	R/W	INT status ,write 1 to clear [0]:PWM0 pnum int(have sent PNUM pulse,PWM_NCNT==PWM_PNUM) [1]:rsvd [2]:PWM0 cycle done int(PWM_CNT==PWM_TMAX)	0x00

Address	Mnemonic	Туре	Description	Reset Value
			[3]:PWM1 cycle done	
			int(PWM_CNT==PWM_TMAX)	
			[4]:PWM2 cycle done	
			int(PWM_CNT==PWM_TMAX)	
			[5]:PWM3 cycle done	
			int(PWM_CNT==PWM_TMAX)	
			[7:6]: rsvd	
0x7b4	PWM_CNT0	R	[7:0]PWM 0 cnt value	
0x7b5	PWM_CNT0		[15:8]PWM 0 cnt value	
0x7b6	PWM_CNT1	R	[7:0]PWM 1 cnt value	
0x7b7	PWM_CNT1		[15:8]PWM 1 cnt value	
0x7b8	PWM_CNT2	R	[7:0]PWM 2 cnt value	
0x7b9	PWM_CNT2		[15:8]PWM 2 cnt value	
0x7ba	PWM_CNT3	R	[7:0]PWM 3 cnt value	
0x7bb	PWM_CNT3		[15:8]PWM 3 cnt value	
0x7c0	PWM_NCNT0	R	[7:0]PWM0 pluse_cnt value	
0x7c1	PWM_NCNT0		[15:8]PWM0 pluse_cnt value	

11.2 Enable PWM

Register PWM_EN (address 0x780)[3:0] serves to enable PWM3~PWM0 respectively via writing "1" for the corresponding bits.

11.3 Set PWM clock

PWM clock derives from system clock. Register PWM_CLK (address 0x781) serves

to set the frequency dividing factor for PWM clock. Formula below applies:

F_{PWM}= F_{System clock} / (PWM_CLK+1)

11.4 PWM waveform, polarity and output inversion

Each PWM channel has independent counter and three status including "Delay", "Count" and "Remaining". Count and Remaining status form a signal frame.

11.4.1 PWM waveform

When PWM#n is enabled, PWM#n enters Delay status. By default PWM#n outputs Low level at Delay status. The Delay status duration, i.e. Phase time, is configured in register PWM_PHASE#n (address 0x788~0x78f). Phase difference between PWM channels is allowed by different phase time configuration.

After Phase time expires, PWM#n exits Delay status and starts to send signal frames. First PWM#n is at Count status and outputs High level signal by default. When PWM#n counter reaches cycles set in register PWM_TCMP#n (address 0x794~0x795, 0x798~0x799, 0x79c~0x79d, 0x7a0~0x7a1), PWM#n enters Remaining status and outputs Low level till PWM#n cycle time configured in register PWM_TMAX#n (address 0x796~0x797, 0x79a~0x79b, 0x79e~0x79f, 0x7a2~0x7a3) expires.

An interruption will be generated at the end of each signal frame if enabled via register PWM_MASK (address 0x7b0[2:5]).

11.4.2 Invert PWM output

PWM#n and PWM#n_INV output could be inverted independently via register PWM_CC0 (address 0x783[3:0]) and PWM_CC1 (address 0x784[3:0]). When the inversion bit is enabled, the corresponding PWM channel waveform will be inverted completely.

11.4.3 Polarity for signal frame

By default, PWM#n outputs High level at Count status and Low level at Remaining status. When the corresponding polarity bit is enabled via register PWM_CC2 (address 0x785[3:0]), PWM#n will output Low level at Count status and High level at Remaining status.

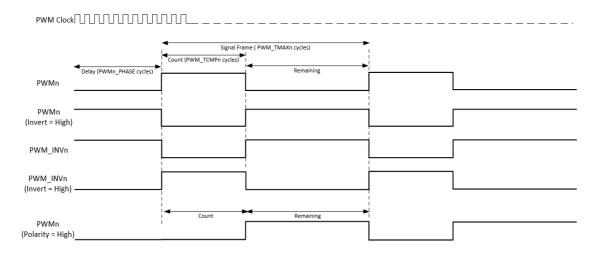


Figure 11-1 PWM output waveform chart

11.5 PWM mode

11.5.1 Select PWM mode

PWM0 supports 2 modes, including Continuous (normal) mode and Counting mode. PWM1~PWM3 only support Continuous mode.

Register PWM_MODE (address 0x782[1:0]) serves to select PWM0 mode.

11.5.2 Continuous mode

PWM0~PWM3 all support Continuous mode. In this mode, PWM#n continuously sends out signal frames. PWM#n should be disabled via address 0x780 to stop it; when stopped, the PWM output will turn low immediately.

During Continuous mode, waveform could be changed freely. New configuration for PWM_TCMP#n and PWM_TMAX#n will take effect in the next signal frame.

A frame interruption will be generated (if enabled) after each signal frame is finished.

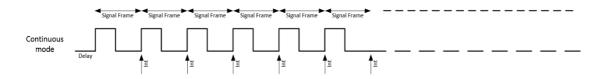


Figure 11-2 Continuous mode

11.5.3 Counting mode

Only PWM0 supports Counting mode. In this mode, PWM0 sends out specified number of signal frames which is defined as a pulse group. The number is configured via register PWM_PNUM0 (address 0x7ac~0x7ad). After a pulse group is finished, PWM0 will be disabled automatically, and a Pnum interruption will be generated if enabled via register PWM_MASK (address 0x7b0[0]).

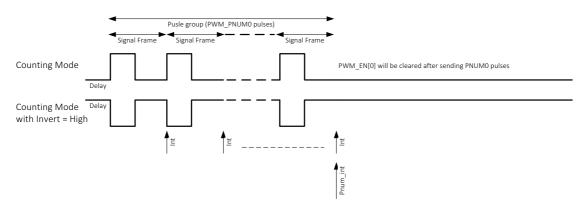


Figure 11-3 Counting mode

11.6 PWM interrupt

There are 5 interrupt sources from PWM function. After each signal frame, PWM#n will generate a frame-done IRQ (Interrupt Request) signal. In Counting mode, PWM0 will generate a Pnum IRQ signal after completing a pulse group. Interrupt status can be cleared via register PWM_INT (address 0x7b1).

12 Key Electrical Specifications

12.1 Absolute maximum ratings

Table 12-1	Absolute	Maximum	Ratings
------------	----------	---------	---------

Characteristics Sym.	Min. Ma	/lax Unit	Test Condition
----------------------	---------	-----------	----------------

Supply Voltage	VDD	-0.3	3.9	V	All AVDD and DVDD pin must have the same voltage
Voltage on Input Pin	V_{In}	-0.3	VDD +0.3	V	
Output Voltage	V _{Out}	0	VDD	V	
Storage temperature Range	T _{Str}	-65	150	°C	
Soldering Temperature	T _{SId}		260	°C	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

12.2 Recommended operating condition

Table 12- 2	Recommended	operation condition	
-------------	-------------	---------------------	--

ltem	Sym.	Min	Тур.	Max	Unit	Condition
Power-supply voltage	VDD	1.9	3.3	3.6	V	
Operating Temperature Range	T _{Opr}	-40	27	85	°C	

12.3 DC characteristics

Table 12-3 DC characteristics

ltem	Sym.	Min	Тур.	Max	Unit	Condition
			15		m۸	Continuous Tx transmission
T		-	12	-	mA	@0dBm output power
Tx current	I _{Tx}		22	-	mA	Continuous Tx transmission
		_	22			@maximum output power

Rx current	I _{Rx}	-	12	-	mA	Continuous Rx reception
Suspend current	I _{Susp}	-	10	-	uA	
Deep sleep current	I _{Deep}	-	0.7	-	uA	

*Note: All tests above are done at room temperature (T=25 $^{\circ}$ C).

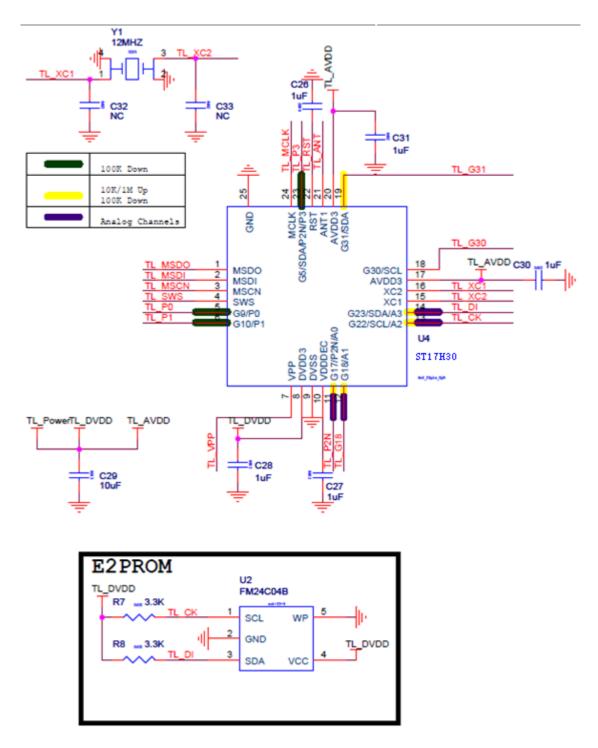
12.4 AC characteristics

Table 12-4	AC Characteristics
------------	--------------------

ltem	Sym.	Min	Тур.	Max	Unit	Condition			
Digital inputs/outputs									
Input high voltage	VIH	0.7VDD		VDD	v				
Input low voltage	VIL	VSS		0.3VDD	v				
Output high voltage	VOH	VDD-0.3		VDD	v				
Output low voltage	VOL	VSS		0.3	v				
RF performance (1Mbps)									
Item		Min	Тур	Max	Unit				
		RF_Rx per	formance	1	1				
Sensitivity	1Mbps		-94		dBm				
Frequency Offset Tolerance		-300		300	KHz				
Co-channel rejection			-3		dB				
In-band blocking rejection	±1 MHz offset		3		dB				

ltem	Sym.	Min	Тур.	Max	Unit	Condition
(Single Tone	-2 MHz		33		dB	
Interference)	offset				uв	
	+2 MHz		30		dB	
	offset		50		ub	
	-3 MHz		33		dB	
	offset				u b	
	+3 MHz		34		dB	
	offset				ub	
	>4MHz		35		dB	
	offset					
	±1MHz		-3		dB	
	offset					
	-2 MHz		26		dB	
	offset		20			
In-band blocking	+2 MHz		22		dB	
rejection	offset					
(Equal Modulation	-3 MHz		31		dB	
Interference)	offset					
	+3 MHz		35		dB	
	offset					
	>4MHz		32		dB	
	offset					
Image rejection			44		dB	
		RF_Tx per	formance			
Output power				6	dBm	
Modulation 20dB			1.3		MHz	
bandwidth						

ltem	Sym.	Min	Тур.	Max	Unit	Condition
16MHz crystal						
Nominal frequency (parallel resonant)	f _{NOM}		16		MHz	
Frequency tolerance	f_{TOL}	-60		+60	ppm	
Load capacitance	CL	5	12	18	рF	Programmable on chip load cap
Equivalent series resistance	ESR		50	100	ohm	
32MHz RC oscillator						
Nominal frequency	f _{NOM}		32		MHz	
Frequency tolerance	f _{TOL}		1		%	On chip calibration
32kHz RC oscillator						
Nominal frequency	f _{NOM}		32		kHz	
Frequency tolerance	f _{TOL}		0.03		%	On chip calibration
Calibration time			3		ms	
ADC						
Differential nonlinearity	DNL		0.8		LSB	
Integral nonlinearity	INL		0.7		LSB	
Signal-to-noise and distortion ratio (fin=1kHz, fS=16kHz)	SINAD		57.8		dB	
Spurious free	SFDR		64.5		dB	


ltem	Sym.	Min	Тур.	Max	Unit	Condition
dynamic range						
(fin=1kHz, fS=16kHz)						
Effective Number of	ENOR		0.2		h:te	
Bits	ENOB	OB	9.2		bits	
Sampling frequency	Fs			250	KHz	VDDH reference
				200	KHz	Vbg reference

13 Application

13.1 Application example for the ST17H30QET24

13.1.1 Schematic

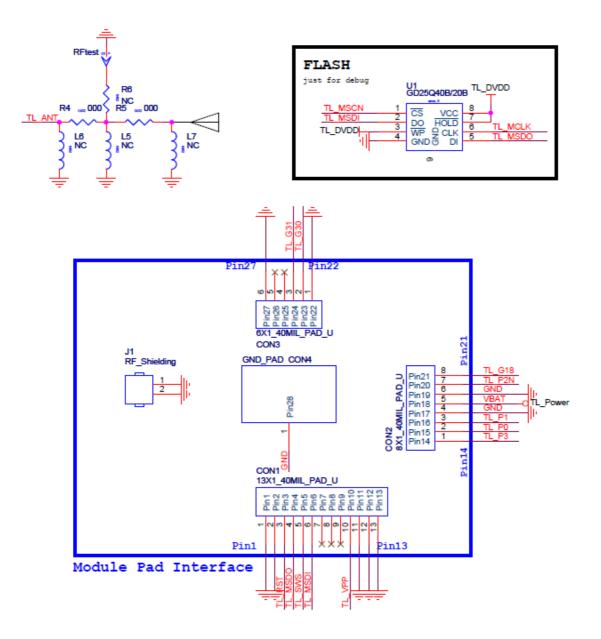


Figure 13-1 Schematic for the ST17H30QET24

13.1.2 Layout

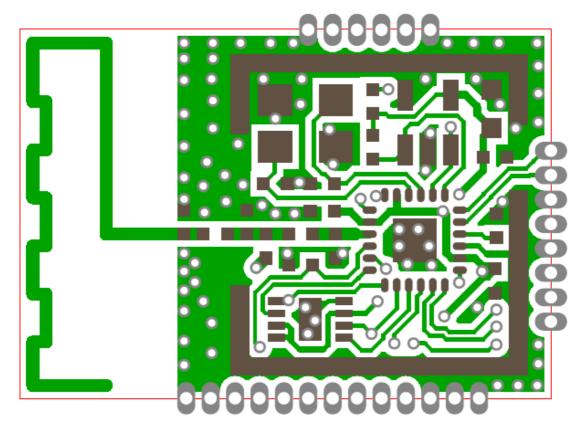


Figure 13- 2 Layout for the ST17H30QET24

13.1.3 BOM (Bill of Material)

Table 13-1	BOM table for the ST17H30QET24

Quantity	Reference	Value	Spec
	C26	1uF	0402
	C27	1uF	0402
5	C28	1uF	0402
	C30	1uF	0402
	C31	1uF	0402
1	C29	10uF	0603
2	R4	0	0402
Z	R5	0	0402
2	R7	3.3K	0402
Z	R8	3.3K	0402
1	U2	FM24C04B	FM24C04B
1	U4	ST17H30QET24	ST17H30QET24
1	Y1	12MHZ	OSC_25x32_+/-20ppm_12pF_4pin